

Regression Clutter Filtering:

A New Clutter Mitigation Solution

John Hubbert, Mike Dixon, Greg Meymaris and Ulrike Romatschke

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH
Boulder, Colorado

Technical Advisory Committee Meeting for the Radar Operations Center

Virtual Meeting

25 March 2022

What is Regression Clutter Filtering?

Time Domain

Regression/Forsythe Polynomials

NOT Savitzky-Golay

Frequency Domain. i.e., GMAP

Windowed

and notched

Fast, low round off error algorithm: http://jean-pierre.moreau.pagesperso-orange.fr/

Why Regression? Improved Signal Statistics

Blackman window: 5.23dB attenuation
 About 50% increase in variance!

Hanning window: 4.19 dB attenuation

About 35% increase in variance

Regression Filter Frequency Response (N=64)

A function of the number of points and the polynomial order Control stop bandwidth with the polynomial order

Frequency

Frequency

Regression Implementation Issues

- The regression filter order selection needs to be automated
- Design an interpolation scheme across the zero velocity gap created by the filter
- Verify the filter with simulations

Normalized Poly. Order vs Normalized Clutter Spectrum Width

Varying the relevant variables over a large space yields the relationship in the graph.

Thus knowing the

- 1. no. of samples,
- 2. SW,
- 3. CNR,
- 4. Nyquist vel.

The needed polynomial order can be predicted.

Gaussian Interpolation Example

- 1. E.g., 7-point interpolation gap
- 2. Use 3 points on each side of the gap
- 3. Initialize points in gap with linear interpolation
- 4. Calculate velocity. Only do Gauss fit for V_{est}/V_{nvq} < Thres.
- 5. Calculate Gaussian fit
- 6. Replace interior 7 points with fit
- 7. Repeat Gaussian fit. 5 iterations should be sufficient

Good threshold ~ 0.2 to 0.3 Vel/Nyquist

S-Pol

13 March 2019

Automated Order Selection

GMAP-like SW Regression

Most Areas in NEXRAD will be Like the S-Pol Case

In the batch, and higher cuts 1.9° and above, there are no overlapping windows (super res.) and a Blackman window is used when the GCF is applied (von Hann was used in the S-Pol case).

KDDC Case

Super Resolution

25 May 2020 03:07:55

VCP 212

Uses Split cut with SZ2

LPRT: Z, Zdr, Phidp, Rhohv

Doppler: Vel, SW

Elev. = 0.48 deg.

NCAR obtained Level 1 data for this case

Super Resolution Case

- 1. There are overlapping 64-point, von Hann windows which slide 32 points at a time for the Doppler scan (PRT=1 ms)
 - For calculating Velocity and spectrum width
- 2. Likewise for the Long PRT scan (3.1 ms), 16-point von Hann window sliding 8 points at a time
 - For Z, Zdr, Phidp, Rhohv

Super Resolution and SZ(8/64) Phase Coding

64 point von Hann window sliding 32 points at a time

Regression Filtering and Super Resolution

Process 64 points at a time, i.e., use contiguous rectangular window

1. Clutter filter on 64 points

2. But, calculate variables on 32 points for super resolution

The effective 2-way antenna pattern

$$f_{\text{eff}}^{4}(\phi) = c \sum_{m} f^{4}(\phi \square m \Delta \phi) \text{ Win}^{2}(m)$$

(based on Zrnic and Doviak, 1976)

Super Resolution

64 point von Hann

32 point rectangular

$$f_{\text{eff}}^{4}(\phi) = c \sum_{\alpha} f^{4}(\phi \square m \Delta \phi) \text{ Hann}^{2}(m)$$

These curves are in agreement with Torres and Curtis 2006, ERAD

Thus 64 point with von Hann window has a comparable effective resolution as a 32 point rectangular window but the 32 point resolution is better

Level 2 Data

Regression Level 1 Data

(no SZ processing)

Long PRT

Regression

Automated order selection

Doppler Scan

Automated order selection

Level 2 Data

Level 2 Data. (HSW)

Regression Level 1 Data (R1/R2)

Difficult to compare

Level 2 Data

What about the variable recovery statistics???

Legacy Super Resolution versus Regression Super Resolution

Simulation parameters:

```
SNR = 45dB
CNR = 45 dB
SW wea. = 2m/s
SW clut. = 0.28 m/s
```

```
PRT = 3.1 ms (LPRT) for Z, Zdr, Phidp, rhohv
PRT = 1 ms (Doppler) for Vel, SW
```

Next Slides Compare:

64 point, Blackman window, and notch filtering (GMAP) to 64 point regression filtering but using 32 points for variable calculation

Regression Filtering with Super Resolution

- Offers a small amount of increased resolution according to calculated effective antenna patterns
- Offers better recovery statistics
- Offers reduced processing times since the regression clutter filter is applied to contiguous 64-point (Doppler scan) and 16-point (LPRT scan), i.e., half of the number of time series as compared to overlapping windows

But What About SZ Recovery Statistics?

From Sachidananda and Zrnic 1999, Systematic Phase Codes...

PRT = 780μ s SW(st) = .5 to 8m/s SW(wt) = 4m/s P1/P2 = 0 to 50dB dB $\lambda = 0.1067$ m Nyqt. Vel = 32.0 m/s Poly. Order = 37 1000 simulations Weak trip SNR = 20dB

Standard Deviation of SZ Weak Trip Velocity

Regression. (order 37)

Legacy (Window and Notch)

STD of SZ Weak Trip Velocity

Can expand recovery area

47 Order Regression

64 point processing

Legacy (Window and Notch)

Weak trip SW = 6m/s

Sachidananda

64 point SZ processing, 32 point statistics,

weak trip SW = 4m/s

37th order regression

(can use higher order to extend recovery range)

Sachidananda 1999

Conclusions and Summary

- Regression filtering on N points as compared to a WN filter on N points has significantly improved variable recovery statistics
- Statistics over a wide range of SNRs, CSRs, PRTs and samples have been carried out and demonstrate the advantages of regression filtering
- Comparisons to Ice et al. 2004 have been done regression filtering is superior
- In these simulations the regression filter in general had significantly better recovery statistics.
- The practical aspects of regression filter: automated order selection, zero velocity interpolation have been implemented and verified
- The regression filter has been implemented on S-Pol data and compared to a GMAP-like filter and demonstrated the improved statistics
- Regression filtering can be used on super resolution data with improved statistics
- Regression filtering can be used in SZ(8/64) processing with improved statistic as shown by simulations
- Regression filtering with SZ processing needs to carried out on NEXRAD level 1 data and then compared to the corresponding level 2 data
- Identify more Level 1 data for regression processing
- Quantify Stds with NEXRAD and S-Pol experimental data.