AMDA: Informational Briefing

Mark Veillette

NEXRAD TAC

08/29/2012

Outline

- Introduction
 - Goals of AMDA
 - Brief algorithm overview (current implementation)

NEXRAD AMDA Performance

- Validation approach
- Results
- Parameter Tuning for NEXRAD
- Future Improvements

Automated Microburst Detection Algorithm

- Goal:
 - Detect instances of moderate to severe wind shear which present a danger to aircraft
- Microbursts:
 - Definition: Minimum radial velocity differential threshold
 15 m s⁻¹ (Wolfson et al. 1994)
- Wind Shear:
 - AMDA also issues detections for any wind shear exceeding a threshold of 7.5 m s⁻¹

Radial Component of Wind Velocity

Automated Microburst Detection Algorithm

- Goal:
 - Detect instances of moderate to severe wind shear which present a danger to aircraft
- Microbursts:
 - Definition: Minimum radial velocity differential threshold
 15 m s⁻¹ (Wolfson et al. 1994)
- Wind Shear:
 - AMDA also issues detections for any wind shear exceeding a threshold of 7.5 m s⁻¹
- AMDA provides a polygon and a strength measurement for each detection

Radial Component of Wind Velocity

AMDA Overview

NEXRAD TAC AMDA 5 MV 08/29/2012

AMDA Segment Detection

AMDA Segment Association

NEXRAD TAC AMDA 7 MV 08/29/2012

AMDA Segment Density Thresholding

NEXRAD TAC AMDA 8 MV 08/29/2012

Outline

- Introduction
 - Goals of AMDA
 - Brief algorithm overview (current implementation)

NEXRAD AMDA Performance

- Validation approach
- Results
- Parameter Tuning for NEXRAD
- Future Improvements

- Subjective analysis of radar reflectivity and velocity (0.5° scans) by human observer
- Recorded microbursts and wind shear events
 - Sites include KFTG (Denver), KFWS (Dallas/Fort Worth), KIWA (Phoenix), KLSX (St. Louis), KTLX (Oklahoma City)
 - 150 total events with wind shear ≥ 15 m s⁻¹
 - 270 total events with wind shear between 7.5 m s⁻¹ and 15 m s⁻¹
 - Continuing to add cases

(Detection Rate)

Probability of AMDA detections near human identified (Truth) microbursts (MB) and wind shear (WS)

Probability of Detection

Shear ≥ 15 m/s	92%
Shear ≥ 7.5 m/s	88%

(False Alarms)

NEXRAD TAC AMDA 12 MV 08/29/2012

(False Alarms)

False Alarm Rates

Shear ≥ 15 m/s	34%
Shear ≥ 7.5 m/s	15%

NEXRAD TAC AMDA 13 MV 08/29/2012

(Parameter Tuning)

Currently working with current AMDA parameters to decrease False alarm rate while maintaining high probability of detection

(Parameter Tuning)

Outline

- Introduction
 - Goals of AMDA
 - Brief algorithm overview (current implementation)

NEXRAD AMDA Performance

- Validation approach
- Results
- Parameter Tuning for NEXRAD

> Future Improvements

A Dry Case

Velocity (0.5° elevation)

• Dry cases like this require lower reflectivity thresholds to trigger a detection

A Dry Case

Velocity (0.5° elevation)

- Dry cases like this require lower reflectivity thresholds needed for detections
- Looking into incorporating reflectivity from higher tilts (e.g. VIL) to help this problem

Future Improvements

- Use information from higher tilts
 - Detecting reflectivity aloft could improve POD/FAR, especially in drier environments
 - Detecting descending cores could help detection
 - Predictive component?

Isosurfaces of 40 dBZ reflectivity aloft

NEXRAD TAC AMDA 19 MV 08/29/2012 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Future Improvements

(con't)

- Environmental parameters (LI, CAPE, theta-e, etc..)
 - Can be used to determine when conditions are right for microbursts (wet vs. dry conditions)
- Dual-Pol enhancements
 - Detection of hail aloft
- Improved shear measurement
 - Lower sensitivity to outliers in velocity measurements
- Use of more frequent surface (0.5°) scanning
 - Other implementations of AMDA had advantage of at least one surface scan every minute

- AMDA provides real time wind shear and microburst detection from NEXRAD data
- Current performance is adequate, but has room for improvement
 - 92% POD / 34% FAR for microbursts (shear \geq 15 m s⁻¹)
 - 88% POD / 16% FAR for wind shear (shear ≥ 7.5 m s⁻¹)
- Currently looking into ways of improving AMDA by decreasing false alarms
 - Information from higher tilts
 - Better shear measurements
 - Environmental parameters