Calibration of KOUN Radar with Metal Spheres

Earle Williams, Kenta Hood, David Smalley

NEXRAD Technical Advisory Committee Meeting

March 1, 2012

- Acknowledgements for team effort
- Definition of Z_{DR} and the Holy Grail: 0.1 dB
- Rationale for calibration effort
- Methods for calibration: Pros and Cons
- Calibration with metal spheres -- Theory
- Calibration with metal spheres -- Measurements with KOUN radar
- Summary of comparisons, theory versus experiment
- Conclusions

Acknowledgements for Team Effort

- Schellon Adkins
- Bill Bumgarner
- Don Burgess
- Mike Douglas
- Doug Erickson
- Nickie Flambures
- Doug Forsyth
- Valery Melnikov
- John Sandifer
- Scott Saul
- Darcy Saxion
- Walt Strong
- Tom Webster
- Dusan Zrnic

Westheimer Airport Operations **FAA** organization **Forecasting for event Theodolite alignment FAA** organization **KOUN** Operations Balloon deployment; 12" sphere KOUN data acquisition; time series analysis Selection of tether sites ROC KOUN data acquisition; time series provision **Westheimer Airport Operations**

- FAA organization; illumination of balloon
- For giving thumbs up and for giving up thumbs

For radars equipped with two orthogonal receiver channels H and V

Definition: $Z_{DR} = 10 \log (Z_H / Z_V)$

But H and V channels must be carefully matched in overall gain!

The current Holy Grail: 0.1 dB accuracy in Z_{DR} (A 2% difference in Z_{H} and Z_{V})

Calibration Methods for Differential Reflectivity (Z_{DR})

'True' calibration:

- 1) Metal sphere calibration
- 2) 'Bird bath': vertically pointing observations on rain
- 3) Sun-pointing (RCVR check only)
- 4) NCAR cross-pol method
- 5) Drizzle

Pseudo calibration:

- 1) Hydrometeor calibration
- 2) Z-Z_{DR} asymptote method
- 3) Clear air backscatter
- 4) Natural ground clutter and towers
- 5) Use of the Moon

How small need a raindrop be to have a Z_{DR} return of 0.1 dB?

"from Teschl et al., (2008)"

'Calibration' by Z_{DR} Asymptote Method

Calibration of KOUN with Metal Spheres - 7 E.W. 03/01/2012

Drop Size Distribution in Stratiform Rain Contains Oblate Raindrops

"from Atlas et al. (1999)"

Drop Size Distributions in Convective, Transition, and Stratiform Conditions

FIG. 4. DSD of different parts of the continental squall line of 22 Feb 1998 observed in Darwin, Australia. Values of DSD parameters (N_0 , Λ , μ) in the convective-center (0737 UTC), reflectivity-trough (0820 UTC), and stratiform (0915 UTC) regions are (4.89 × 10⁴, 3.57, 3.87), (4.08 × 10⁶, 8.27, 5.19), and (2.35 × 10³, 3.06, 1.81), respectively. The values of N_0 are modal values.

"From Maki et al. (2000)"

Calibration of KOUN with Metal Spheres - 9 E.W. 03/01/2012

- By definition: drizzle drops have diameters in range 200 - 500 microns, with rainfall rate < 0.5 mm/hr
- Drizzle drops are 0 Z_{DR} targets from all incident angles
- BUT, 1000 droplets per cubic meter, with D = 200 microns has Z = ND⁶ which is -12 dBZ
- Too weak for detection by most radars
- LITTLE JOY WITH THIS APPROACH

What targets are suitable for Z_{DR} calibration, relative to 0.1 dB 'Holy Grail' criterion?

Target	Differential Reflectivity	Suitability?	
Raindrops	> 3 dB	Νο	
Stratiform raindrops	> 0.5 dB	Νο	
Dry snow	0.5 - 2 dB	Νο	
Drizzle drops	< 0.1 dB	Yes	
Metal spheres	< 0.01 dB	Yes	

'Bird Bath' Method: Z_{DR} Calibration at Vertical Incidence

Raindrops at vertical incidence are 0 dB Z_{DR} targets

Calibration of KOUN with Metal Spheres - 12 E.W. 03/01/2012

Valparaiso 'Bird Bath' Z_{DR} Bias Check

NEXRAD Radars Can Point Vertically

Procedure:

Remove some mechanical stops (bolts) Elevation angle encoder functions to 90° Software modification could be needed to record data

Recommendation:

Make measurements on rain at vertical incidence during polarimetric upgrade

Two calibrations for the price of one

- Calibrate differential reflectivity end-to-end
 - A sphere is isotropic and a 0 dB target
- Calibrate reflectivity end-to-end
 - The radar cross section of a metal sphere is the geometrical cross section πr^2 when the sphere is large in comparison to a radar wavelength

Metal Sphere Specifications

Metal Calibration Spheres							
Diameter	Composition	Manufacturer Cost Sphericity		Maximum Z _{DR}			
6"	aluminum	Century Metal Spinning Co.	\$400	0.005" in 6"	< 0.007 dB		
12"	aluminum	Trimillenium Corp.	\$722	0.5%	< 0.043 dB		

6" Metal Sphere for Calibration

Calibration of KOUN with Metal Spheres - 17 E.W. 03/01/2012

Attachment of the 6" Calibration Sphere to the Base of the Tethered Neoprene Balloon

Calibration of KOUN with Metal Spheres - 18 E.W. 03/01/2012

Tethered Metal Sphere

Calibration of KOUN with Metal Spheres - 19 E.W. 03/01/2012

Floodlight Illumination of the Tethered Balloon Following FAA Requirements

Calibration of KOUN with Metal Spheres - 20 E.W. 03/01/2012

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Radar Cross Section of Metal Sphere versus Scattering Parameter

Calibration of KOUN with Metal Spheres - 21 E.W. 03/01/2012

Sphere Centered in Pulse Resolution Volume

Calibration of KOUN with Metal Spheres - 22 E.W. 03/01/2012

Volume reflectivity (with units of area per unit volume)

$$η = π5 |k|2 Z / λ4$$
(1)

The radar pulse resolution volume (PRV) is the volume occupied by the metal sphere with radar cross section σ .

Accordingly, the sphere effective volume reflectivity is then:

 $\eta = \sigma/PRV \qquad m^2/m^3 \qquad (2)$

where $\sigma = \pi r^2$ for a metal sphere large compared to a λ and where PRV = $\pi \theta \phi h R^2/8 m^3$,

Equating (1) and (2) and solving for radar reflectivity Z gives

 $Z = (8 \lambda^4 / \theta \phi h \pi^5 |k|^2) r^2 / R^2 \qquad mm^6 / m^3 \qquad (3)$

Use (3) to compute reflectivity expected for metal spheres versus radar range R

Theory:	Z = (8 λ^4 / θ φ h π ⁵ k ²) r ² /R ² mm ⁶ /m ³
	λ = 11.08 cm
	$\theta = \phi = 0.95 \text{ deg} = 1.66 \times 10^{-2} \text{ rad}$
	h = 1.50 μs
<mark>6" sphere</mark>	k ² = 0.93
	R = 3400 meters
	Z = 17200 mm ⁶ /m ³
	10 log Z = 42.3 dBZ

6" Sphere Signal versus Slant Range

Calibration of KOUN with Metal Spheres - 25 E.W. 03/01/2012

Calibration of KOUN with Metal Spheres - 26 E.W. 03/01/2012

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6" Sphere Narrow Spectral Width

Calibration of KOUN with Metal Spheres - 27 E.W. 03/01/2012

6" Sphere Time-Frequency Spectral Plot

Pendulum Oscillation

Period for a simple pendulum of length L is:

$$T = 2\pi \sqrt{\frac{L}{g}} = 1.3$$
 seconds

Solve for L = 42 cm

12" Sphere Signal versus Slant Range

Calibration of KOUN with Metal Spheres - 30 E.W. 03/01/2012

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Calibration of KOUN with Metal Spheres - 31 E.W. 03/01/2012

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

12" Sphere Narrow Spectral Width

Calibration of KOUN with Metal Spheres - 32 E.W. 03/01/2012

12" Sphere Time-Frequency Spectral Plot

I and Q Mismatch Explains 'Ghosting'

Results

	Predicted Z (dBZ)	Measured Z (dBZ)	Std. Dev. Z (dB)	Predicted Z _{DR} (dB)	Measured Z _{DR} (dB)	Std. Dev. Z _{DR} (dB)
6" Sphere	42.3	42.5	0.47	0	-0.90	0.25
12" Sphere	48.3	46.7	0.36	0	-0.87	0.20

- Z_{DR} offset biased negative
- Standard deviation based on 128 samples
- 0.43 dB standard deviation on Z_{DR} pulse-to-pulse for 6" sphere
- 0.33 dB standard deviation on Z_{DR} pulse-to-pulse for 12" sphere

Centering Problem of Sphere within PRV

6" Sphere Centered

12" Sphere Drifted

- The KOUN radar is well calibrated in reflectivity Z
 - Difference between theory and experiment is ~0.3 dB
- The KOUN radar is not well calibrated in differential reflectivity Z_{DR}
 - The Z_{DR} offset from zero is of order -0.9 dB for both metal spheres
- Use of standard metal sphere targets provides a practical, accurate, and inexpensive means to calibrate NEXRAD dual pol radars in both reflectivity and differential reflectivity
 - Worthwhile to spot check additional NEXRADs
- Remaining puzzle: Why is the pulse-to-pulse measurement of Z_{DR} on a presumed single scatterer as variable as it is?