## Icing Hazard Levels Decision Briefing

**Robert Hallowell** 

August 29, 2012





- Icing Hazard Levels Algorithm : Motivation
- Icing Hazard Levels Algorithm : Details
- Sample Performance
- Future Enhancements
- Summary



- Icing is a hazard to aviation and currently there are no icing products available via NEXRAD
  - 12% of Aviation Accidents are caused by icing
- Dual Polarization provides unique insight into icing regions
  - Current HCA has been developed over a 15 year period
  - Does not detect icing directly, but, Graupel category can be used to identify regions of icing aloft
  - Provides 5 minute updates
  - High confidence icing regions
- Model data (RAP) can provide enhanced analysis
  - Already in NEXRAD via AWIPS
- Collaborative effort: NSSL, NCAR, OS&T





### **Dual Polarization Enables Hydrometeor Classification**

#### **HCA Category Relationship to Icing Potential**

| Categories       |                 | No Echo | Dry Snow | Wet Snow | Ice Crystals | Graupel     | Big Drops   | Light/Mod<br>Rain | Heavy Rain  | Rain and<br>Hail | Ground<br>Clutter/AP | Biological | Unknown |
|------------------|-----------------|---------|----------|----------|--------------|-------------|-------------|-------------------|-------------|------------------|----------------------|------------|---------|
| Thresholds       |                 | NE      | DS       | WS       | IC           | GR          | BD          | RA                | HR          | RH               | GC                   | BI         | UK      |
| Melting<br>Layer | Above           | Unknown | None     | None     | lcing        | lcing       | lcing       | lcing             | lcing       | lcing            | Unknown              | Unknown    | Unknown |
|                  | Mostly<br>Above | Unknown | None     | None     | lcing        | lcing       | lcing       | lcing             | lcing       | lcing            | None                 | Unknown    | Unknown |
|                  | Within          | Unknown | None     | None     | Unknown      | lcing       | Conditional | Conditional       | Conditional | lcing            | None                 | None       | Unknown |
|                  | Mostly<br>Below | None    | None     | None     | Unknown      | Conditional | None        | None              | None        | None             | None                 | None       | None    |
|                  | Below           | None    | None     | None     | None         | None        | None        | None              | None        | None             | None                 | None       | None    |

|  | <b>HCA Classification</b> | Key |
|--|---------------------------|-----|
|--|---------------------------|-----|

Current HCA Category

Not in HCA

Not enough information to classify

| Icing Hazard Key |                                                          |  |  |
|------------------|----------------------------------------------------------|--|--|
| Icing:           | Definitive icing region                                  |  |  |
| Conditional:     | Potential hazard based on fluctuations in freezing level |  |  |
| None:            | No icing                                                 |  |  |
| Unknown:         | More research is needed                                  |  |  |



- Update\_alg\_data (environmental settings from model)
  - Modified to produce linear buffer grids of thermal data and icing potential
- MLDA Melting Layer Detection Algorithm
  - Changes to how missing bright-band radar radials are handled & Model enhancements
- IHL Icing Hazard Levels
  - New algorithm to produce Icing Hazard Levels product
    - Uses HCA Graupel class as base
    - Expanded based on RAP model data

### Update\_alg\_data Changes Gridded Freezing Height LB



IHL TAC Decision Brief - 6 RGH 08/29/2012 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY



### MLDA Example – 4/27/2011 8Z KVNX



Uses 4.0 – 10.0 degree tilts



### **MLDA Issues / Modifications**

- MLDA Issues
  - Designed for single melting layer scenario typically found in warm weather events
  - Does not create product without significant wet snow
  - Impacted by detection environment / scan strategy
  - Missing radials are filled with average of good radials
  - Default ML top is the model height 0°C isotherm at radar
- MLDA Improvements
  - Valid radar-based MLDA radials have highest priority
  - Missing radials are filled with interpolation between good radials
  - When available, model data is used to replace interpolated radar-based radials

### Evolution of Descending Melting Layer to the North



LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

IHL TAC Decision Brief - 9 RGH 08/29/2012

# Evolution of Ascending Melting Layer to the South





### **Example IHL Top/Bottom (Graupel-only)**



IHL TAC Decision Brief - 11 RGH 08/29/2012 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY



### **PIREP vs Graupel-only IHL**



IHL TAC Decision Brief - 12 RGH 08/29/2012



• Utilize subset of NCAR CIP interest fields (RH & T)





### **Combining HCA with CIP for IHL**

KPBZ 2/24/2012 0509Z



- CIP Extension
  - Only where graupel is already present
  - CIP interest > 80%





- NEXRAD IHL performance evaluation and tuning
  - Based on graupel class from HCA with model enhancements
  - Currently running 24/7 at 34 sites
  - Cross checked against PIREP reports
  - Product description:

| Range Coverage                                                     | 300 km (dual pol range)                                                                                   |  |  |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|
| Azimuthal<br>Coverage                                              | 360 degrees                                                                                               |  |  |
| Range Gate<br>Resolution                                           | 1 km                                                                                                      |  |  |
| Azimuth Resolution                                                 | 1 degree                                                                                                  |  |  |
| Volume Product<br>Output<br>(one group for top,<br>one for bottom) | Altitude (in kft)<br>Severity* (up to 5 levels)<br>Confidence* (up to 10<br>levels)<br>* - future version |  |  |



### IHL KLSX 08/16/2012 2100 UTC





IHL TAC Decision Brief - 16 RGH 08/29/2012



### IHL KOKX 02/24/2012 0952 UTC



CIP shows moderate to heavy icing severity PIREP light rime icing 9 kft 75 km NW of OKX IHL bot alt ~ 6 kft; IHL top alt ~16 kft





### **Development Path of IHL Algorithm**

- Continue to address IHL
  - MLDA Refinements / CIP threshold
  - Sites running RUC 40km
- Deliver NEXRAD IHL in August 2012
  - Perform usual ROC reviews / ICD
- Utilize additional HCA categories
  - Ice crystals / Big drops (at top of melting layer)
  - ZDR Brightband
  - NCAR "Mixed Phase" and "Freezing Drizzle Aloft" Categories
  - Confusion matrix of HCA categories
- Expand use of model data (HCA & IHL)
  - Multiple crossings of 0 degree isotherm
  - Thickness/Temperature range of melting layers



- IHL creates first icing hazard product from NEXRAD
- IHL is based on the dual pol graupel classification with enhancements from model-based CIP calculations
- Logical results observed between IHL and PIREPs
- Request a decision from the NEXRAD TAC