

CMD: Improvements and Transition to Dual Polarization

NEXRAD Technical Advisory Committee Meeting Norman, OK

7-9 March 2011

Scott Ellis, Mike Dixon, John Hubbert, and Greg Meymaris

National Center for Atmospheric Research Boulder, Colorado (hubbert@ucar.edu)

Presentation Overview

Doubled peaked clutter spectra
 Modified infill and spike filter
 The addition of dual-polarization fields

KMEX Anomalous Ground Clutter

Doubled Peaked Spectra

 What type of ground clutter target would cause a "null" at zero velocity?

Two Dominant Clutter Targets

Simulated Double Peaked Spectrum

•Quite rare
•Two dominant targets
•180 degree phase shift difference between the two targets

Time Series Magnitude and Phase

How to Identify Such Targets as Clutter?

Doubled Peaked Spectrum

How to Identify Such Targets as Clutter?

- Identify spectra with a large mimima in the time series magnitude accompanied by a large phase change
- Calculate CPA over the two new segments
- Calculate the weighted mean CPA from the two segments

Comparison of original and modified CPA values Short PRT

KEMX

KFTG

New CPA membership

- New CPA computation prevents low CPA values in clutter
- Modified the CPA membership function accordingly

KFTG – high level tilt with weather

DBZ

VEL

KFTG – high level tilt CPA original and modified Note: signature is larger in area, but not higher in value

Original CPA

modified CPA

CMD Flag: Old versus New

With legacy CPA calculation

New CPA calculation

KFTG – Filtered DBZ and VEL with latest CPA

TE – need to modify CPA interest map for use with latest version 16

Improving the infill filter and speckle filter

- The existing infill filter is not aggressive enough.
- A modified infill filter is proposed.
- Also, an alternative to the NEXRAD speckle filter is proposed.

KEMX Example CMD flag field before applying the infill filter

Clutter only

KEMX Example CMD flag field after applying version 4 infill filter

Clutter only

Version 5 CMD flag infill filter

 One each side of the gate in question, construct a computational kernel with weights decreasing with distance from the gate.

In the forward direction, if the CMD flag is set,

sum up (weights * CMD val) at that gate

In the reverse direction, if the CMD flag is set, sum up (weights * CMD val) at that gate

 IF forward_weight >= threshold AND reverse_weight >= threshold, set CMD flag at center gate to TRUE (Threshold = 0.35)

IF not, set CMD_flag at center gate to FALSE

Proposed CMD flag speckle filter

 Consider speckle to be CMD flags over only 1 or 2 consecutive gates.

 In these cases, use a higher CMD threshold to determine the CMD flag.

If the CMD value is less than this higher value, set the CMD flag to false to remove the speckle.

Speckle thresholds:

- 1 isolated point: use 0.75
- 2 isolated points: use 0.65
- 3 isolated points: use 0.55
 - Otherwise use 0.5

KFTG example - No infill filter

KFTG example - Version 4 infill filter

KFTG Example - Version 5 infill filter and speckle filter

Addition of Dual-pol Variables to CMD

- Dual-pol version of CMD has been developed for WSR-88D dual-pol upgrade
- Two additional fuzzy logic inputs
 - SD (ZDR)
 - Standard deviation of Z_{DR} using 5 gates in range
 - SD (PHIDP)
 - Standard deviation of Φ_{DP} using 5 gates in range
- Dual-pol CMD running on
 - S-Pol since 2008
 - KOUN since beginning of this year

Addition of Dual-pol Variables to CMD: Goals

- Investigate errors of dual-pol variables (ZDR) due to clutter overlaid with weather echoes
- Investigate the characteristics of the new CMD dualpol feature fields
 - Pure Clutter and pure weather
 - Mixed clutter and weather
- Determine CSR values the CMD algorithms identify for filtering
 - Can approximate CSR using existing data sets
 - Compare performance of single and dual pol algorithms
- Demonstrate improvement of dual-pol CMD over single-pol CMD

Dual-pol Errors Due to Clutter: Simulated Dual-Pol data

- Used I&Q simulator as detailed by R. Frehlich and M. J. Yadlowsky
 - Frehlich, R. and M. J. Yadlowsky, 1994: Performance of mean-frequency estimators for Doppler radar and LIDAR. *Journal of Atmospheric and Oceanic Technology*, 11, 1217-1230; corrigenda, 12, 445-446.
- Adapted for dual-pol following Chandrasekar et al. 1986
 - Chandrasekar, V., Bringi, V.N., Brockwell, P.J., "Statistical properties of dual polarized radar signals". Proc. 23rd conference on radar meteorology, pp193-196, Snowmass, Colorado, Sep 1986.
- VCP 11
- 1000 range bins per simulation
- Combined weather (wx) and clutter signals
- Clutter W = 0.25, V = 0
- Varied: CSR, clutter ZDR, wx ZDR, wx Vr, wx W
- Specified high SNR

Simulated Z_{DR} bias versus clutter Z_{DR} for various CSR

New Dual-Pol Inputs: S-Pol Clear Scan Reflectivity (dBZ) Radial Velocity (m/s)

S-Pol Clutter/Weather Mixed

Reflectivity (dBZ)

Fields... View... Maps... Reload Value Exit Config... Overlays... Movie... Current Time: 04/24/2008 21:40 Frame 1: 04/24/2007 21:20 (21:19 to 21:20) 0.5 deg -80 -60 -2020 60 -40**ĎBZA2**: 0.5 deg 04/24/2007221 dBZ aea 100 km 100 75 75 km 70 65 1.3 50 km 25 km 45 40 35 30 25 20 15 10 5 0

Differential Reflectivity (dB)

S-Pol Clutter/Weather Mixed

Reflectivity (dBZ)

SD(ZDR)

S-Pol Clutter/Weather Mixed

Reflectivity (dBZ)

SD(PHIDP)

Normalized Histograms of SD(ZDR) in Clutter Mixed with weather at various CSR values

Mean ZDR bias (dB) in mixed weather and clutter: -8 > CSR > -10 (dB)

Histograms of SD(Φ_{DP}) in pure weather and clutter

Normalized Histograms of SD(PHIDP) in Clutter Mixed with weather at various CSR values

Mean ZDR bias (dB) in mixed weather and clutter: -8 > CSR > -10 (dB)

Std Dev Z_{DR} and Φ_{DP} Membership Functions

Reflectivity (dBZ)

Radial Velocity (m s⁻¹)

SPIN

CPA

Texture of Reflectivity

CPA

Std Dev ZDR (dB)

Std Dev PHIDP (deg)

Dual-Pol CMD (0 to 1)

Single-Pol CMD (0 to 1)

Dual-Pol CMD Flag

Single-Pol CMD Flag

Dual-Pol Filtered dBZ

Single-Pol Filtered dBZ

Reflectivity (dBZ)

Radial Velocity (m s⁻¹)

Dual-pol CMD (0 to 1)

Single-pol CMD (0 to 1)

Dual-pol CMD Flag

Single-pol CMD Flag

Dual-pol Filtered dBZ

Single-pol Filtered dBZ

S-Pol Example: Clear Scan dBZ

S-Pol Example: Unfiltered dBZ

S-Pol Example: Dual-Pol CMD Flag

S-Pol Example: dBZ Filtered on CMD

S-Pol Example: dBZ Filtered All Bins

CMD Performance

Dual-pol CMD Conclusions

- Dual-pol CMD is similar architecture to the single pol version
- Two additional inputs
 - Standard deviation of Z_{DR}
 - Standard deviation of Φ_{DP}
- New dual-pol variables improve CMD performance
 - Detect clutter contamination at lower CSR values
 - Fewer false alarms
 - Fewer missed detections
- Ready for implementation and testing on WSR-88D
- AEL delivered to ROC

Thanks for your attention

Questions?

hubbert@ucar.edu

S-Pol Unfiltered ZDR

S-Pol ZDR Filtered on CMD

