A Preliminary Comparison of MDA and LLSD Performance and Properties Kimberly L. Elmore, Ph.D. **CIMMS/NSSL**

Inference Engines

 To identify mesocyclones in single Doppler radar an "inference engine" must identify areas of azimuthal shear, fundamentally a derivative of radial velocity w.r.t. azimuthal distance:

<u>ди</u> д**н**а

where *u* is radial velocity and θ_d is the distance in azimuth bewteen samples (approximately $\Delta \theta \times r$).

- MDA relies on a peak-to-peak derivative estimate.
 NOT resistant to noise.
- A local linear least squares derivative (LLSD) estimate is more resistant to noise, especially if *u* is first filtered to remove extreme values

Current MDA

Local Linear Least Squares Derivative (LLSD)

- Draws upon long standing techniques that use local regression fits, rather than global fits, as filtering operations.
- Fits are first order, thus the regression coefficient is used as the derivative estimate:

y = mx + b,

where y is, say, radial velocity and x is location. The regression coefficient is approximately the local derivative, y_x .

A Toy Example in 1D

- Procedure:
 - Start with an analytic function (sine)
 - Add noise (Gaussian)
 - Estimate derivative using peak-to-peak and LLSD
 - Show difference between analytic derivative, peak-to-peak, and LLSD

What about 2D?

- Expansion to 2D results in fitting a plane to a n x n "window" or kernel of u rather than simply n points along each a ring of constant range.
- Advantages: a single application yields both azimuthal and radial derivatives.
 - Azimuthal is analogous to vorticity
 - Radial is analogous to divergence
 - Both derivatives are locally orthogonal.
- LLSD acts as a filter on the entire radial velocity field. Width of the kernel filter is dependent on range from the radar.
- The LLSD used in the report is 2D, using a 5 x 5 window (five gates in range and five beams in azimuth).

2D LLSD: Nuts and Bolts

The LLSD is a filter applied to the entire radial velocity field.
 Width of the kernel filter is dependent on range from the radar.
 With some algebra, the orthogonal derivatives u_r and u_s are:

$$u_r = \frac{\sum i u_{ij} w_{ij}}{\Delta r \sum i^2 w_{ij}} \qquad u_s = \frac{\sum s_{ij} u_{ij} w_{ij}}{\sum (\Delta s_{ij})^2 w_{ij}}$$

- where u_{ij} is the radial velocity at (i,j), Δr is the pulse volume depth in range, s_{ij} is the azimuthal distance from the center of the window to the point (i,j), and w_{ij} is a uniform weight function.
- Because u_r and u_s are derived from only the radial component of the wind, they are approximations of one half the horizontal divergence and vertical vorticity, respectively, assuming a locally symmetric wind field.

u_s from Real Data

Algorithm Outline for Mesocyclone Tracks from 2D LLSD

- Calculate u_s
- Remove sharp "spikes" caused by dealiasing errors and bad velocity data
- Threshold based on reflectivity
 - Include only data in and near storms; nonprecipitation echoes removed as well
- Generate layer maxima
 - Max in 0-3 km AGL
 - Max in 3-6 km AGL

Mesocyclone Tracks 3 May 1999

The 6-hour maxima of u_s shows the tracks of strong circulations. The overlaid white lines show the tracks of tornado damage for this case, as determined from ground and aerial

surveys.

The Report

- Compare Build 12 ORPG MDA to a rudimentary LLSD inference engine run on WDSSII system.
- VCP 12 used throughout
- Seven cases, all from Witt (2008): KICT, KDDC, KDMX, KFTG, KGLD, KMPX
- Output: lat, lon, strength rank (MDA only) and circulation ID number (used to assess coherency)
- LLSD values subject to K-means clustering to identify contiguous areas of cyclonic shear of cyclonic shear greater than 0.006 s⁻¹ for areas of 25, 60 and 90 km² (in report scales 0, 1, and 2). Two levels: 0-3 km AGL and 3-7 km AGL. Note: no optimization for circulation coherency for LLSD.

KICT: a "moderate" case

KICT Low-Level Scale 0

Circles = LLSD, + = MDA

- Many more detections from MDA than LLSD
- MDA: 201 detections with 99 uniques.
- LLSD: 43 detections with 24 uniques
- Mean lifetime for MDA = 2.7 volumes, LLSD = 1.8 volumes
- Mean lifetime difference significant at p = 0.03

KFTG: a "light" case

KFTG Low-Level Scale 0

Circles = LLSD, + = MDA

- Many more detections from MDA than LLSD
- MDA: 95 detections with 45 uniques.
- LLSD: 16 detections with 8 uniques
- Mean lifetime for MDA = 2.1 volumes, LLSD = 2.1 volumes
- Mean lifetime difference insignificant.

KGLD: an "active" case

- Again, any more detections from MDA than LLSD
- MDA: 979 detections with 267
 uniques
- •LLSD: 265 detections with 124 uniques Mean lifetime for MDA = 3.7 volumes, LLSD = 2.1 volumes
- Mean lifetime difference significant at p < 0.005

Aggregate Characteristics

Algorithm	Detections	Uniques	Mean Lifetime	Max Lifetime		
MDA	2159	687	3.14	23		
LLSD 0 Low	573	285	2.01	18		
LLSD 1 Low	351	186	1.89	18		
LLSD 0 Mid	873	420	2.01	30		
LLSD 1 Mid	515	222	2.13	18		

Concluding Points

- LLSD produces more visually coherent detections than does MDA (even though MDA coherent lifetimes are longer)
- Difference due to years of work to make MDA coherent in space/time while almost no such work has been expended on LLSD (results shown here use an experimental K-means technique optimized for reflectivity cell tracking)
- Thus, LLSD performance is even more promising
- MDA that uses an LLSD inference engine will reduce workload and fatigue for operational meteorologists

More Concluding Points

- Implementation will require:
 - Develop subject matter expert "truth" data sets for testing and development using super-res data
 - Develop optimal spatial scale and vertical association scales; spatial scales and thresholds for u_s may need to vary with height and/or range.
 - Optimize space/time tracking based on "truth" data sets.
 - LLSD offers a way to easily blend data from different radars.

Questions?

Backup/Reserve Slides

Some 2D Synthetic Data Results

Azimuthal shear

Divergence

An early example of LLSD for u_s in B-scan coordinates using a 3x3 kernel.

	256.27	256.77	257.26	257.74	258.26	258.76	259.26	259.77	260.25	260.76	261.27	261.76	262.25	262.79	263.26	263.78 2
93.88	-4.86	5.83	5.83	-0.9719	2-6.80	-8.75	-6.80	-8.75	-6.80	-10.69	-13.61	-8.75	-7.78	-14.58	-13.61	-13.61 -
93.62	-2.92	2.92	3.89	-0.9719	2-7.78	-9.72	-8.75	-16.52	-17.49	-12.63	-8.75	-7.78	-13.61	-14.58	-14.58	-16.52 -
93.38	-0.9719	2-1.94	1.94	-1.94	-5.83	-8.75	-12.63	-18.47	-11.66	-16.52	-4.86	-9.72	-10.69	-16.52	-11.66	-12.63 -
93.12	-3.89	-4.86	-2.92	-5.83	-9.72	-11.66	-18.47	-14.58	-6.80	-10.69	-7.78	-11.66	-8.75	-12.63	-16.52	-13.61 -
92.88	-3.89	-3.89	-2.92	1.94	-7.78	-14.58	-18.47	-20.41	-15.55	-1.94	7.78	-4.86	-3.89	-9.72	-10.69	-10.69 -
92.62	-6.80	-8.75	-3.89	0.00000	-5.83	-21.38	-22.35	-21.38	-12.63	4.86	5.83	3.89	-1.94	-2.92	-7.78	-5.83 -
92.38	-8.75	-6.80	-1.94	0.97192	-6.80	-18.47	-26.24	-27.21	-24.30	6.80	4.86	15.55	0.97192	0.00000	-4.86	-4.86 -
92.12	-7.78	-7.78	-4.86	-0.9719	2-7.78	-18.47	-28.19	-28.19	-21.38	-0.9719	23.89	34.99	19.44	0.97192	-3.89	-0.97192-
91.88	-6.80	-6.80	-3.89	1.94	-10.69	-18.47	-29.16	-31.10	-13.61	2.92	24.30	31.10	30.13	1.94	5.83	2.92 (
91.62	-4.86	-9.72	-0.9719	22.92	-17.49	-24.30	-30.13	-29.16	-14.58	11.66	37.90	38.88	20.41	7.78	7.78	7.78 5
91.38	-10.69	-5.83	-3.89	-2.92	-12.63	-24.30	-31.10	-30.13	-13.61	2.92	33.05	36.93	14.58	6.80	14.58	14.58 (
91.12	-10.69	-15.55	-2.92	-1.94	-14.58	-28.19	-32.07	-21.38	-10.69	9.72	20.41	41.79	38.88	25.27	13.61	15.55 4
90.88	-13.61	-11.66	-6.80	-9.72	-12.63	-30.13	-34.02	-24.30	-8.75	15.55	24.30	38.88	35.96	22.35	12.63	13.61
90.62	-11.66	-11.66	-9.72	-12.63	-12.63	-26.24	-31.10	-29.16	-22.35	24.30	36.93	38.88	40.82	32.07	22.35	10.69 1
90.38	-9.72	-9.72	-14.58	-15.55	-23.33	-28.19	-34.99	-29.16	-2.92	51.51	41.79	35.96	41.79	35.96	28.19	16.52 1
90.12	-10.69	-9.72	-10.69	-18.47	-15.55	-20.41	-33.05	-29.16	4.86	41.79	5.40	48.60	40.82	39.85	33.05	13.61 1
89.88	-8.75	-20.41	-20.41	-25.27	-18.47	-21.38	-30.13	-25.27	-8.75	46.65	52.48	46.65	41.79	37.90	29.16	18.47 *
89.62	-10.69	-13.61	-20.41	-24.30	-24.30	-16.52	-21.38	-13.61	-0.9719	260.26	i8.32	54.43	43.74	39.85	36.93	22.35
89.38	-21.38	-19.44	-27.21	-30.13	-24.30	-16.52	-19.44	-8.75	-2.9	17.49	60.26	55.40	41.79	34.02	24.30	20.41 2
89.12	-14.58	-17.49	-31.10	-29.16	-21.38	-11.66	-13.61	-9.72	1.9	38.88	64.15	53.46	46.65	37.90	32.07	21.38
88.88	-20.41	-16.52	-23.33	-30.13	-19.44	-12.63	-6.80	0.00000	0 11. 6	29.16	63.17	62.20	45.68	34.99	25.27	19.44 *
88.62	-16.52	-20.41	-36.93	-35.96	-18.47	-7.78	-4.86	4.86	24.0	43.74	63.17	54.43	49.57	34.99	23.33	20.41
88.38	-12.63	-22.35	-31.10	-32.07	-16.52	-6.80	3.89	15.55	33. 5	54.43	57.34	54.43	47.62	34.99	23.33	19.44 2
88.12	-11.66	-32.07	-38.88	-37.90	-21.38	-9.72	0.00000	13.61	25. 7	41.79	54.43	54.43	44.71	31.10	27.21	17.49 2
87.88	-13.61	-26.24	-37.90	-32.07	-25.27	-20.41	-2.92	19.44	25. 7	33.05	52.48	53.46	41.79	33.05	24.30	18.47
87.62	-14.58	-29.16	-34.99	-36.93	-22.35	-16.52	-7.78	12.63	21. 3	42.76	47.62	46.65	39.85	32.07	21.38	20.41
87.38	-13.61	-28.19	-32.07	-24.30	-10.69	-7.78	0.97192	16.52	26. 4	41.79	48.60	46.65	28.19	25.27	23.33	17.49
87.12	-22.35	-28.19	-33.05	-30.13	-9.72	-2.92	8.75	16.52	28. 9	48.60	43.74	46.65	35.96	26.24	23.33	20.41
86.88	-25.27	-32.07	-32.07	-32.07	-4.86	-2.92	8.75	18.47	22. 5	42.76	44.71	42.76	34.99	26.24	21.38	18.47
86.62	-6.80	-26.24	-32.07	-26.24	-10.69	-6.80	3.89	20.41	26. 4	40.82	41.79	40.82	39.85	26.24	22.35	16.52
86.38	-6.80	-24.30	-30.13	-28.19	-13.61	1.94	13.61	16.52	34. 2	36.93	38.88	38.88	36.93	29.16	18.47	19.44 1
86.12	-2.92	-28.19	-29.16	-21.38	-4.86	9.72	25.27	26.24	29. 6	35.96	36.93	35.96	35.96	24.30	21.38	18.47 1
85.88	-9.72	-22.35	-11.66	-22.35	-2.92	6.80	23.33	24.30	31. 0	34.02	32.07	36.93	33.05	26.24	19.44	16.52 1
85.62	-9.72	-14.58	-15.55	-12.63	3.89	12.63	18.47	29.16	24. 0	33.05	33.05	34.02	30.13	26.24	23.33	18.47 1
85.38	13.64	2.02	2.02	1.0.4	0.72	13.61	23.33	32.07	23 3	28.10	30.13	20.16	34.02	25.27	20.44	17.40

00.00	256.27	256 77	257.26	257 74	258.26	258 76	250.26	250 77	26 25	260.76	26127	26176	262.25	262 70 20
94.62	230.27	0.00040	0.00121	237.74	200.20	200.70	0.00040	0.00020	20 20	01.0.0015	201.27	201.70	202.23	1 0 00121 0
04.38	0.00153	0.00040	0.0012	0.00112	0.0000	0.00010	0.00040	0.00020	0.01	61.0.0013	2 0.0016	2-0.0010	1 0 0000	1 0 0000121-0
04.10	0.00132	0.00001	0.00152	0.00210	0.0010	0.0000	1 0 0002	0.00040		71.0.0013	2-0.0010	1 0.00012	1 0.0000	
94.12	0.00173	0.00101	-0.00152	0.00230	0.00142	-0.0008	1.0.0002	0.0000	10.00	71-0.0011	1 0 0001	0.0000	1-0.0005	2 0 00003 0
93.00	0.00103	0.00122	-0.00142	-0.00254	0.0018	0.0008	-0.0002	1.0.0007	1-0.00	100.00003	1 0 0002	1 0.0004	1.0.0011	2-0.00092-0
93.02	0.00092	0.00092	-0.0009.	2-0.00214	-0.00214	-0.00130	-0.0005	0.0006	1-0. 00	0.0006	0.0003	1-0.0005	1-0.0014	3-0.001020
93.30	0.00020	0.00072	-0.0005	1-0.00164	1-0.00215	-0.0018	-0.0010	2-0.00010	0.0 10	2 0.0014	0.0004	1-0.0006	2-0.0015	3-0.000920
93.12	-0.0005	0.00041	0.00000	-0.00123	-0.00236	0.0028	-0.0013	0.00103	0.0 20	0.0026	0.0002	1-0.0015	4-0.0016	4-0.00113 0
92.00	-0.0007	20.00062	0.00031	-0.00113	-0.00290	-0.0036	-0.00154	0.00195	0.0 49	4 0.0042	0.0002	1-0.0019	c-0.0020	6-0.00134-0
92.62	-0.0011	0.00093	0.00082	-0.00113	5-0.00402	2-0.00454	-0.00144	0.00258	0.0 77	01 0.0054	0.0001	0-0.0016	5-0.0020	6-0.00186-0
92.38	-0.0016	0.00134	0.00124	-0.00134	-0.00480	-0.0052	-0.0018	0.00310	0.0 8	90.0070	3 0.0022	7-0.0004	1-0.0038	3-0.00321-0
92.12	-0.0020	70.00145	0.00145	-0.00160	-0.00539	-0.0059	1-0.00228	0.00384	0.0 198	64 0.0098	50.0051	8 0.00010	0-0.0055	sc-0.00529 - 0
91.88	-0.0018	70.00114	0.00114	-0.00208	-0.00530	-0.00624	-0.0030	0.00457	0.0 10	2 0.0128	0.0073	8 0.0000	0-0.0068	36-0.00697 -0
91.62	-0.0013	0.00083	0.00083	-0.0026	1-0.00584	-0.0058	4-0.0018	0.00511	0.0 13	6 0.0149	0.0080	3-0.0004	2-0.0069	98-0.00740- <mark>0</mark>
91.38	-0.0009	40.00115	0.00073	-0.00282	2-0.00617	-0.0053	3-0.0005	20.00564	0.0 19	2 0.0146	0.0074	2 0.00010	0.0060	06-0.00721-0
91.12	-0.0011	50.00115	0.00063	-0.00231	-0.00629	-0.0050	0.00105	0.00608	0.1 21	6 0.0145	0.0071	3 0.00063	8 <mark>-0.0048</mark>	62-0.00660-0
90.88	-0.0008	40.00116	0.00011	-0.00158	-0.00541	7-0.0051	0.00095	0.00704	0.0,/38	7 0.0139	0.0058	9 0.00063	-0.0026	63-0.00599-0
90.62	-0.0005	0.00042	-0.0005	-0.00116	6-0.00443	-0.0049	0.00000	0.00864	0.0176	60 0.01349	0.0035	8 0.00011	-0.0012	(6-0.00453-0
90.38	0.00000	0-0.00032	2-0.00127	-0.00127	7-0.00328	3-0.00433	0.0008 <mark>-</mark> 0.0008	0.01015	0.0000	20.01332	0.0015	9 -0.0008	5-0.0012	7-0.00370 <mark>-0</mark>
90.12	-0.0002	1-0.00138	3-0.00180	-0.0009	-0.00201	1-0.0028	-0.0003	20.010 7	0.0227	9 0. 1420	0.0000	0-0.0020	1-0.0023	i3-0.00265 <mark>-0</mark>
89.88	-0.0014	9-0.00223	3-0.00202	-0.0005	3-0.00032	2-0.0008	0.00149	0.008	0.0217	9 0 163	7 0.0002	1 -0.0031	9-0.0037	2-0.00276-0
89.62	-0.00213	3-0.00234	-0.00213	-0.0002	10.00117	0.00107	0.00277	0.00629	0.0213	1 0.0178	0.000	11 <mark>-0.0037</mark>	3 <mark>-0.004</mark> 6	<mark>9-0.00320-0</mark>
89.38	-0.0026	7-0.00224	-0.00182	0.00021	0.00256	0.00246	0.00321	0.00577	0.0187	0.0177	0.0022	4 -0.0040	6-0.0057	77-0.00406-0
89.12	-0.0019	3-0.00214	-0.00190	0.00086	0.00332	0.00322	0.00354	0.00750	0.0166	61 0.0157	5 0.0040	7-0.0041	8 <mark>-0.0068</mark>	36-0.00493-0
88.88	-0.00204	4-0.00247	-0.00150	0.00172	0.00430	0.00419	0.00473	0.00903	0.0139	7 0.0126	0.0047	3-0.0037	6-0.0076	53-0.00623-0
88.62	-0.0028	0-0.00388	-0.00216	0.00302	0.00582	0.00539	0.00604	0.00992	0.0136	9 0.0097	0.0023	7 -0.0028	0 <mark>-0.007</mark> 3	3-0.00711-0
88.38	-0.0041	1-0.00530	-0.00249	0.00378	0.00724	0.00681	0.00746	0.00973	0.0127	5 0.0078	0.0005	4 -0.0021	6 <mark>-0.0068</mark>	31-0.00746-0
88.12	-0.0056	4-0.0066	-0.00282	0.00423	0.00791	0.00737	0.00867	0.00932	0.0106	2 0.0078	0.0013	0-0.0021	7-0.0065	50-0.00672-0
87.88	-0.0065	2-0.00620	-0.00152	0.00348	0.00717	0.00750	0.00924	0.00891	0.0089	0.0078	0.0018	5-0.0022	8 <mark>-0.0060</mark>	09-0.00620-0
87.62	-0.0074	1-0.0057	-0.0001	10.00425	0.00632	0.00698	0.00905	0.00785	0.0082	8 0.0075	0.0019	6-0.0022	9-0.0060	00-0.00578-0
87.38	-0.0075	4-0.00530	0.00098	0.00558	0.00623	0.00645	0.00820	0.00721	0.008	30.0065	0.0009	8-0.0026	2-0.0059	90-0.00525-0
87.12	-0.0074	-0.0057	0.00088	0.00724	0.00691	0.00581	0.00778	0.00658	0.0084	4 0.0059	2 0.0004	4 -0.0024	1-0.0066	18-0.00515-0
86.88	-0.0069	3-0.0062	0.00033	0.00759	0.00825	0.00594	0.00715	0.00671	0.007	0.0047	3 0.0001	1-0.0019	8-0.0052	8-0.00517-0
86.62	-0.0066	2-0.0066	0.00022	0.00728	0.00871	0.00673	0.00728	0.00651	0.0060	0.0032	0.0002	2 -0.0009	-0.0043	0-0.00540-0
86.38	-0.0050	-0.00619	0.00000	0.00686	0.00874	0.00796	0.00652	0.00553	0.0046	4 0.0017	7 0.0003	3-0.0006	6-0.0033	2-0.00520-0
86.12	-0.0038	E-0.00460	0.00011	0.00665	0.00832	0.00799	0.00599	0.00399	0.0031	1 0 00 144	0 0006	7-0.0005	-0 0031	1-0.00455-0
85 88	-0.0017	8-0.0026	0 00056	0.00656	0.00734	0.00723	0.00467	0.00289	0.0027	8 0 0011	0 0005	6-0.0003	3-0.0027	8-0.00400-0
05.00	0.0010	0.0000	0.00470	0.00500	0.00000	0.00547	0.00007	0.00057	0.000	0.0040	0.0007	0 0 0 0 0 0	0.0000	0.00040

Vertical Cross-Section of *u*_s

3D Reconstructions

Azimuthal shear (aqua) may be viewed in 3D alongside the high-reflectivity core (red isosurface), 20 dBZ shell (grey isosurface) and 0.5 degree reflectivity scan of a storm. The vertical depth of the storm is about 20 km.

Circulation Center Location

