Effects of Antenna Patterns on Bias in Differential Reflectivity

Dusan Zrnic (Contributors: R. Doviak, A. Ryzhkov, G. Zhang)

Coupling of H and V fields

- Coupling between the horizontally and vertically polarized fields
 - Can be caused by the medium
 - During propagation
 - Upon backscattering
 - Can originate within the radar system
 - Coupling through the antenna is an order of magnitude larger than coupling through the rest of the radar system

Effects of Coupling

- Simultaneous transmission and reception of H and V polarized fields (Pol WSR-88D):
 - Coupling can cause large biases in differential reflectivity (and other polarimetric variables)
- Alternate transmission and reception of H and V polarized fields:
 - The effects on polarimetric variables are generally negligible

Bias in ZDR – SHV mode

- The bias in $Z_{\rm DR}$ imposes the most stringent requirement on the antenna system
- Cross-polar voltage pattern and copolar voltage pattern determine the bias
 - Cross-polar voltage pattern: $(g_{hv})^{1/2}f_{hv}(\theta,\phi)$
 - Copolar voltage pattern: $(g_{hh})^{1/2}f_{hh}(\Omega)$ solid angle: $\Omega = (\theta, \phi)$

Bias in ZDR – SHV mode

• First and Second order terms in integrals of $(g_{hv})^{1/2}f_{hv}(\theta,\phi)$ can be significant contributors. Integrals are significant within the main lobe

– First order integral term:

$$\frac{\sqrt{g_{hv}} \int_{\Omega} f_{hv}(\Omega) f_{hh}^{3}(\Omega) d\Omega}{\sqrt{g_{hh}} \int_{\Omega} f_{hh}^{4}(\Omega) d\Omega}$$

Second order integral term:

$$\frac{g_{hv}\int_{\Omega} |f_{hv}(\Omega)|^2 f_{hh}^2(\Omega) d\Omega}{g_{hh}\int_{\Omega} f_{hh}^4(\Omega) d\Omega}$$

Two Antenna Pattern Types

1) SINGLE CROSS-POLAR MAIN LOBE

Principal cross-polar LOBE coaxial with the copolar beam

KOUN (WSR-88D)

Copolar and Cross-polar patterns of the feed horn (KOUN)

back port

NORMALIZED BIAS DUE TO COAXIAL CROSS-POLAR AND COPOLAR BEAMS (SHV mode)

For on-axis cross-polar Gaussian shape patterns:

$$W(SHV) = \frac{4\theta_{1x}^2}{\theta_1^2 + 3\theta_{1x}^2} \cdot \frac{g_{hv}^{1/2}}{g_{hh}^{1/2}}$$

Beamwidths: Copolar = θ_1 ; Cross pol = θ_{1x} ; Gains: Copolar = g_{hh} ; Cross pol = g_{hv}

For equal beamwidths, $W = (g_{h\nu}/g_{hh})^{1/2}$ On the KOUN, $10\log(g_{h\nu}/g_{hh}) = -32$ dB; or $W \approx 0.025$.

Thus the bounds on bias δZ_{DR} are:Upper bound: $\delta Z_{DR} < 0.9 \text{ dB}$ Intermediate bound: $\delta Z_{DR} < \pm 0.4 \text{ dB} \text{ (if } \beta = 0^{\circ})$ Lower bound: $\delta Z_{DR} < \pm 0.05 Z_{DR} \text{ (if } \beta = 0, \& \gamma = \pi)$

 Cross-polar 10-cm |F_{vh}|² patterns for the upgraded WSR-88D antenna (Measurements made at a different site)

On-axis cross-polar gain: $g_{vh}(0) \approx -41 \text{ dB}$ Median Cross-polar peak gain: $g_{vh}(\text{peak}) \approx -35 \text{ dB}$

2) Cross-polar patterns along the 45 deg plane for OU PRIME

3) Copolar & cross-polar patterns for offset reflector ($\lambda = 5$ cm)

Compliments of Renzo Bechini, Weather Operations Center, ERSA Friuli VeneziaGiulia-CSA

Cross-Polar pattern for the Swiss Polarimetric Imaging Radiometer (Offset reflector)

λ =3 mm Cross-polar peak: = -18 dB

Offset parabola

Adapted from Durić et al., (2008) IEEE Trans. Geosci. & Remote Sensing

Bias for a 4-lobed Cross-polar Pattern

Sample calculations of the bias weighting factor W_4 for the three antenna patterns

	peak gain	bias weighting	Bias(SHV)
	g _{hv} /g _{hh}	factor W₄	δZ _{DR} (dB)
1) OU PRIM	E: -35 dB	≈3x10 ⁻⁴	2x10 ⁻³ Z _{DR}
2) GPM-500	C: -30 dB	W ₂ ≈5x10 ⁻⁴	3x10 ⁻³ Z _{DR}
3) WSR-88	D: -35 dB	≈3x10 ⁻⁴	2x10 ⁻³ Z _{DR}

In all cases the computed ZDR bias is below 0.1 dB Other factors and imperfections could have more significant influence on the bias?

Conclusions

- Z_{DR} bias should be < $0.1Z_{DR}$ for rain rate error < 20 %
- Bias is most sensitive to Coaxial Cross-polar radiation
- Large coaxial cross-polar radiation should not be caused by parabolic dish antennas
- The intrinsic cross-polar pattern of center feed reflectors is a Quad of principal lobes
- Pattern with a Quad of lobes causes insignificant bias
- Cross-polar pattern of the preproduction WSR-88D has Quad cross-polar lobes that are at about 35 dB below the main lobe peak; hence bias cause by these should be less than 0.1 dB.
- If the gross-polar gain at beam center of a quad pattern is < - 40 dB compared to antenna gain the worst bias in Z_{DR} is <0.14 dB

NEXRAD Dual Polarization Design CI-02 Antenna/Pedestal OMT Main Feed Assembly

First Article Port to Port Isolation

A.R.A.

