

Staggered PRT Status

(Informational Briefing)

Darcy Saxion Radar Operations Center

19 November 2009 NEXRAD Technical Advisory Committee

Outline

- Why SPRT?
- Overview of SPRT
- Three Phased Approach
- Status
- Future Plans

Why SPRT?

SPRT Status, 11/19/09 TAC

Why SPRT?

- Recovers higher velocities from longer PRTs
 - Long PRT reduces range folding
 - Staggered PRT provides method to recover aliased velocities
- Replaces Batch and Contiguous Doppler without range unfolding (CDBatch) tilts
 - Less range folding than Batch
 - Can recover higher velocities than CDBatch

SPRT Overview

- Dealiasing Technique
 - Transmits alternating Pulse Repetition Time intervals, T_1 and T_2
 - Employs Pulse Pair Processing equations
 - Calculates a velocity from each time interval
 - Finds the difference between velocities
 - Uses that difference to dealias one of the original velocities
- Utilizes a DC removal clutter filter
 - Only achieves 30 dB suppression

SPRT Time Series Diagram

Example: Scale reflects $\kappa = 2/3 = T_1/T_2$ and $T_1 < T_2$

6

Velocity Difference Transfer Function

SPRT and Clutter Filtering

- SPRT originally used a DC removal clutter filter
 - Only achieves 30 dB suppression
 - Does not meet requirements
- Why not use GMAP with SPRT?
 - GMAP works in the frequency domain, not time domain
 - Fourier Transform changes from the time domain to the frequency domain
 - The DFT is the commonly implemented Fourier Transform method
 - The DFT assumes uniformly spaced time samples
 - SPRT has non-uniformly spaced time samples
- NSSL developed a solution
 - Spectral Algorithm for Clutter Harmonics Identification and removal (SACHI Filter)

The SACHI Filter

 $2T_u$

 $T_{2} = 3T_{\mu}$

spectrum

- **Zero filling** reconstructs uniform PRT sequence (T_{μ})
- Spectrum is modulated: 5 replicas
- Central portion of spectrum is given to GMAP to determine notch width
- **Projections** are used to remove clutter from other 4 replicas
- Velocity is estimated from resulting spectrum
 - Higher errors due to replicas
- Deconvolution undoes
 modulation
- Velocity is estimated from resulting spectrum

– Extended Nyquist: $v_a = \lambda/4T_u$

Diagram provided by S. Torres, CIMMS/NSSL

Three Phased Implementation Approach - Overview

- Phase I CCR: NA07-10703 NA06-33301
 - Enabled Sigmet's Dual PRT (DPT2) Major Mode
 - Collected Staggered PRT level 1 data
 - Compared Sigmet's DPT2 with NSSL's Staggered PRT (SPRT)
 - Selected NSSL's SPRT
- Phase II CCR: NA07-10802 NA07-35104
 - Implemented RVP8 Major Mode for NSSL's SPRT
 - Engineering test functionality
 - Utilizing a DC removal clutter filter
 - Continuing data collection and analysis
 - Analyzing SACHI's complex spectral clutter filter (NSSL)
- Phase III CCR: NA08-21662
 - Add implementation of the SACHI clutter filter
 - Provide operational functionality

Three Phased Implementation Approach – Phase I

- Phase I Complete
 - Enabled Sigmet's Dual PRT (DPT2) Major Mode
 - Collected Staggered PRT level 1 data
 - Compared Sigmet's DPT2 with NSSL's Staggered PRT (SPRT)
 - Selected NSSL's SPRT

Three Phased Implementation Approach – Phase II

- Phase II Complete
 - Implemented RVP8 Major Mode for NSSL's SPRT
 - Engineering test functionality
 - Utilizing a DC removal clutter filter
 - Continuing data collection and analysis
 - Analyzing SACHI's complex spectral clutter filter (NSSL)
- Verified SPRT implementation
 - Bin by bin comparison with NSSL
- Applications Branch adjusted the VDA
- RDA Build 11.2 (non-operational)
 - Deployed to the field 23 November 2009

Three Phased Implementation Approach – Phase III

- Phase III In Progress
 - Implement the SACHI clutter filter
 - Provide operational functionality
- NSSL provided the AEL for the SACHI filter
 - Included recovery of range overlaid signal
- Need for data became apparent
 - For use in unit testing the implementation of the SACHI filter
 - For engineering analysis once implementation is complete
 - SPRT changes transmission of pulses
 - Required collection of data in operational mode
 - Required determining an operational VCP
- Knew that KCRI resource was limited
 - Increased the priority of data collection

Engineering SPRT VCP

- Create an engineering VCP
 - NSSL provided analysis for optimal PRFs
 - SPRT
 - SACHI filter
 - 2/3 PRT ratio
 - Merged SPRT and VCP 221
 - Proposed operational SPRT VCP, VCP 222
 - Modified VCP 222 to add information for engineering
 - Additional SPRT scan at 1.5° elevation
 - Provides data with clutter contamination
 - Additional Batch scan at 1.5° elevation
 - Multiple sweeps at the same elevation angle
 - 2.4°, 3.4°, and 9.9°
 - Different processing
 - » Batch
 - » SPRT
 - » CD
 - Provides a comparison between processing methods

Engineering SPRT VCP

Range vs. Height from WSR-88D Beam Height Equation VCP 223

15

SPRT Reflectivity

SPRT Velocity

Future Plans

- Continue to implement the SACHI filter
- Risks
 - Dual pol first priority for resources
 - People
 - Testbed
- Build 13 first build after Dual Pol deployment
 - Focus on implementing CMD
 - Fine tuning Dual Pol
- Operational SPRT targeted for Build 14
 - Implemented in Build 13

Questions?

SPRT Spectrum Width

