NEXRAD TAC Meeting

1 Nov 2006

The Uncertainty of RF Power Measurements for ZDR Calibration

Engineering Calibration (EC) Sub-Task

Objectives of EC Subtask

 Develop practical ZDR uncertainty budget for the test radar instrument (S-Pol) wherein component uncertainties are frequently ~ 0.1 dB.

Apply findings to dual-polarization
WSR-88D, where desired Uc < 0.1 dB.

Method

 Modify NCAR's S-Pol to accommodate a highstability measurement/calibration sub-system, including waveguide re-plumbing and design/assembly of automated test equipment (ATE).

- Execute tests or experiments designed to differentiate the component uncertainties.
- Test procedures, environments, and applications of field calibration activity.

Characterize RF Power Measurements

 Separate, quantify, and correlate instrument uncertainty components (errors).

Systematic (bias, often Type B)

- from calibration procedures
- from influence factors & drift
- from secondary effects, such as mismatch
- from component replacement.

Random (noise, often Type A).

Guidelines

 Evaluation will be based on designed calibration experiments to determine the relative importance of 10% (< 0.5 dB) effects.

Manual calibration experiments.

Automated calibration experiments.

Influences

 Thermal stress Mechanical stress Chemical stress Moisture Source stability Modulation RF Interference Procedural (operator, computation, ..)

Environmentally-driven Uncertainties Affect:

 Power Sensors. Attenuators. Cables & Power Splitters. Connectors. Waveguide Couplers. Mismatch Coefficients. Solar Flux. • Amplifiers. • CW Generators. Noise Generators.

RF Power Measurement Uncertainty

S-Pol

Measuring Waveguide Transmit Power

S-Pol

Distribution Of Differential Waveguide Power Measurements

Waveguide Transmit Power Measurement Trials Histogram Ratios of Transmitter Output to Coupler Sidearm SD = 0.135 dB (TOF PM / SA PM)

S-Pol

Practical S-Pol ZDR Instrument Bias Uncertainty Budget

Engineering Calibration (EC), S-Pol, Instrument Bias for ZDR				
(based on RVP8 and waveguide RF power measurements)				
October 26, 2006			"Meas"	"Select"
	<u>H dB</u>	<u>V dB</u>	H/V dB	<u>H/V dB</u>
PtH, PtV Transmit Power Ratio				
PTX dBm Mon Point	0.565	-0.581		
Tx Cal Factor dB	56.26	57.26		
Pt AVG Est at ref dBm	56.83	56.68	0.15	
Pick Pt ratio dB				0.15
Estimate uc dB Type A				0.07
Estimate uc dB Type B				0.11
GaH, GaV, Antenna System G	ain Ratio			
Gs dB REFRACTT cals	45.23	44.81	0.41	
Gs config.rdr dB	45.63	45.40	0.23	
Gs dB Long Term	45.10	44.97	0.13	
Gsh/Gsv Solar Dixon			0.19	
Gsh/Gsv Solar Manual Fit			0.35	
Pick Gs ratio dB				0.19
Estimate uc dB Type A				0.03
Estimate uc dB Type B				0.11
GHC, GVC Receiver Gain Ratio	27.52	27.40		
Gr_RVP8 dB	37.52	37.19		
Balance Attn	0.00	0.00		
Gr_RVP8 Est from ref	37.52	37.19	0.33	
Pick Gr ratio dB				0.33
Estimate uc dB Type A				0.04
Estimate uc dB Type B				0.11
<u>ThetaH, ThetaV Beamwidth Ra</u>	<u>atio</u>			
Theta (config.rdr) deg	0.89	0.89		
Theta (solars) deg	0.92	0.88		
Pick Theta ratio dB	0.90	0.89		
Theta Est at ref dB	-0.92	-1.01	0.10	
Pick Theta ratio dB				0.10
Estimate uc dB Type A				0.03
Estimate uc dB Type B				0.08
S-Pol ZDR Instrument Bias dB Uc (2-sigma) ZDR Instrument Bias dB				1.05 0.37

S-Pol Automated Test Equipment

S-Pol Automated Test Equipment

Subtask Deliverables

Uncertainty of engineering calibration (EC) estimates of radar measurement bias.

Recommendations for installation of dual polarization capability.

Recommendations for optimized calibration interval & procedures.

Recommendations for training.

Future Instrument-related Issues

 Quantify selected WSR-88D components in field with ATE, such as LNAs, couplers, power sensors, test cables.

 Develop enhanced SunCheck for dualpolarization WSR-88D / RVP8 with additional functionality for differential antenna parameters.

Develop calibration-tracking software.

Consultants

 NIST Statistical Engineering Division
NIST RF, Microwave and Millimeter Wave Measurements Group

- Agilent
- Micronetics
- NCAR Design and Fabrication Services

Measurement References

 American National Standard for Expressing Uncertainty--U.S. Guide to the Expression of Uncertainty in Measurement, ANSI/NCSL Z540-2-1997

 Taylor, B.N. and C.E. Kuyatt (2004, 1994) Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1297, Gaithersburg, MD.