

WSR-88D Site-Specific Scanning Strategies

Presented by
Randy Steadham
Radar Operations Center, Applications Branch

22 March 2006 Technical Advisory Committee

Outline

- Overview
 - History
 - Potential Benefits
 - Potential Concerns
- Short-Term Plans
- Longer-Term Plans
- Options Recommendation

History

- Original NEXRAD Environmental Assessment approval was based on lowest elevation angle of 0.5 degree
 - Antenna can physically go from -2° to +60° in elevation
- Earlier radars operated manually below 0.5°

History

- In 1995, lower elevation angles were requested to support the Lake Effect Snow Project
 - NWS Director rejected by saying it was too early in the NEXRAD program to lower elevation angles; could jeopardize remaining installations
 - Later, NEXRAD PMC decision was also "No"
- 2001 DOC Inspector General report for Missoula WFO recommended the NWS:
 - Conduct engineering and environmental studies of lower scanning strategies
 - Make appropriate adjustments

History

- A National Research Council committee assessed NEXRAD flash flood forecasting capabilities at Sulphur Mountain in 2005 and reported:
 - "It is obvious that use of a lower antenna elevation angle from an elevated radar site would provide greater low-level coverage in directions not obscured by intervening terrain."

Potential Benefits

- Improved detection of low-level weather by radars at elevated locations
- Literature, based upon simulations, indicate great promise
 - For example, a study that considered the Missoula, Montana WSR-88D (Brown et al. 2001) states that "Using the lowest elevation angle (+0.5°) of the current WSR-88D scanning strategies, simulated rainfall rates detected in the valleys progressively decrease from about 80% of the surface value near the radar to only 1% of the surface value at 220 km. However, using an elevation angle of -0.8°, simulated rainfall rates detected at all ranges out to 220 km are about 80%-95% of the surface value."

Potential Benefits

- Improved detection of shallow precipitation events
- Improved detection of severe weather events

Potential Concerns

- Impact of lower elevation angles on:
 - NEXRAD Agency User Systems (AWIPS, OPUP, WARP, ITWS, etc.)
 - NWS Central Server
 - External Government and private sector users
 - Added coverage implies slower VCPs

Potential Concerns

- Public concern / perception of increased RF energy exposure
- Cost (software, systems, communications, environmental impact studies)

- Analysis and test preparations in 2006
- Status:
 - A working group has been actively planning a field test for six WSR-88D sites
 - A mature Field Test Plan has been drafted
 - Project was added to NWS Operations and Services Improvement Process (OSIP)
 - Brief NPMC next week

- Forge ahead in 2006
 - If NWS funding is found, conduct
 Environmental Assessments; requires about
 260 days (est. \$ 250K)
 - Modify WSR-88D software
 - Submit FY09 PPBES initiative for networkwide deployment

- If approved, start test in 2007 (Build 9)
 - Number of sites depend on funding, many sites volunteering
 - Mountain top sites first priority
 - One- to 2-year test to obtain sufficient metrics for cost/benefit analysis

- Make lower elevation data available to local site, create two Level II data streams
 - AWIPS software change or OPUP install
 - Legacy data stream not changed for associated and external users
 - New data stream for real-time analysis and archive

Longer-Term Plans

- Complete analysis of results; issue report
 - Work through OSIP with test results, cost/benefit
- Use test results to fine-tune final configuration
- Work toward wider implementation

Options to PMC

- Stop all further work; no longer consider (no agency requirement)
 - Pro: future spending and ROC resources can be applied to other projects
 - Con: the potential benefits of site-specific scanning strategies and metrics will never be realized

Options to PMC

- 2. Continue planning field test pending funding availability
 - Pro: minimal resources will be applied to the project ensuring readiness if and when funds become available
 - Con: resources to maintain an uncertain project may be a waste of resources

Options to PMC

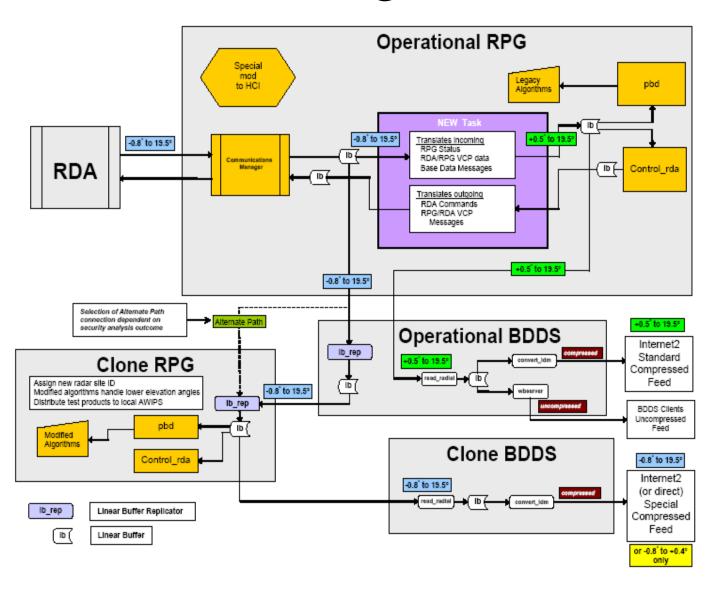
- 3. Validate as an agency requirement and actively pursue a funding initiative to support field test and implementation
 - Pro: a field test will be completed resulting in improved radar detection capabilities
 - Con: delays beginning of field test to at least FY09 and implementation to FY11

Recommendation to PMC

• Plan to recommend Option 2: Approve the Site-Specific Scanning Strategies Field Test pending funds

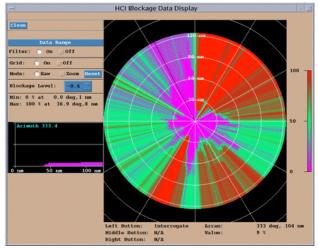
BACKUP SLIDES

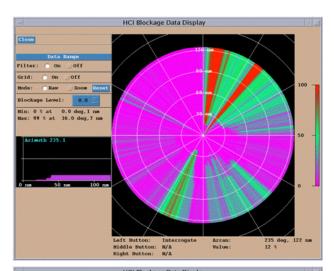
Six Field Test Sites



Site-specific Scans

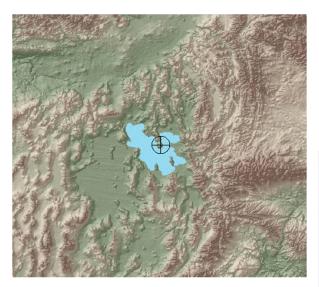
- Missoula, MT (KMSX), add elevation angles of -0.8°, -0.4°, and 0.0°
- Salt Lake City, UT (KMTX), add elevation angles of -0.4° and 0.0°
- Amarillo, TX (KAMA), add elevation angle of $+0.2^{\circ}$
- North Webster, IN (KIWX), add elevation angles of $+0.2^{\circ}$
- Medford, OR (KMAX), add elevation angles of -0.8°, -0.4°, and 0.0°
- Albuquerque, NM (KABX), add elevation angle of $+0.2^{\circ}$

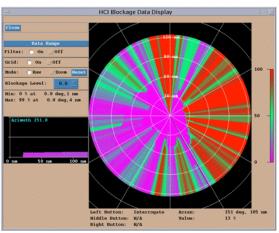

Test Configuration

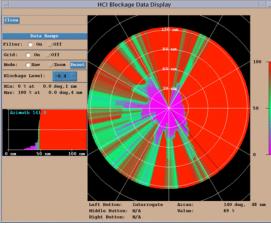


KMSX Blockage Files

KMSX topography and blockage files for 0.0, -0.4, and -0.8 degree elev. angles

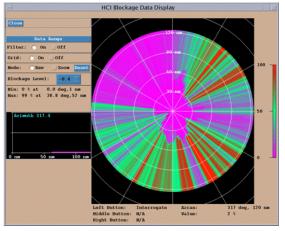


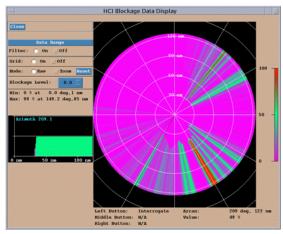


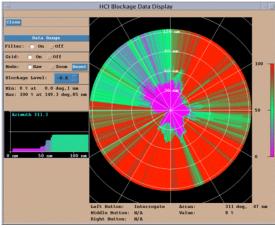


KMTX Blockage Files

KMTX topography and blockage files for 0.0 and -0.4 degree elev. angles






KMAX Blockage Files

KMAX topography and blockage files for 0.0, -0.4, and -0.8 degree elev. angles

Lower Elevation Angles

- Objective: Improve scanning strategies at NEXRAD sites where the lowest elevation angle overshoots weather, particularly at mountaintop sites.
- <u>Deliverables</u>: Site-Specific Volume Coverage Patterns
- Status: ECP 0267P activated, Working Group active, OSIP SON submitted, Funds not identified
- Expected Completion Date: Following Field Test, Sep 2009
- Next Milestone/Deliverable: Supplemental Environmental
 Assessment [Aug 2006 Jul 2007]; Field Test analysis and report

"Site-Specific Scan Strategies (4S)" Project FIELD TEST

February 2006

Performance Parameters

- 1. 4S Working Group
- 2. Equipment & Resources
- 3. Software & Test Configuration
- 4. Security
- 5. Funding & OSIP

Key Issues / Risks

- Funding
- Supplemental Environmental Assessment
 - 260 day process
 - FONSI must result
- Timing Want to avoid multiple Builds for test
- External System participation (AWIPS)
- OSIP

ID	0	4S Field Test		2006					2007				2008					
				_		6 0-411-16			1st Half		2nd Half				2nd Half		2009	
			Qtr 4	1st Half Qtr 1 Qtr 2		2nd Half Qtr 3 Qtr 4						1st Half Qtr 1 Qtr 2				1st Half Qtr 1 Qtr 2		
2	Ť	Planning (4S Field Test Only)	QII 4	Qti	I WII Z	QUI 3	UII 4	WII I	Uli 2	ulio	QII 4	Į uli i	uli 2	QII 3	QU 4	WII I	Wil i	
6																		
7		Environmental Assessment			•					•								
10																		
11		ROC Development			•	_												
15																		
16		Site Readiness					_		_									
21																		
22		Test								_								
25																		
26		Analysis								•								
29																		
30		Report											,	_				
33																		
34	THE STATE OF	Test End																

"4S Field Test" Funding
(Fund Source Unknown)

FY06 - \$ 280 K (95% NEPA)

FY07 - \$ 30 K

FY08 - \$ 10 K