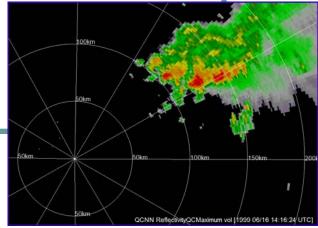


Quality Control Neural Network

Valliappa.Lakshmanan@noaa.gov

National Severe Storms Laboratory & University of Oklahoma Information briefing to the NEXRAD Technical Advisory Committee, San Diego, CA http://cimms.ou.edu/~lakshman/



Quality control

Goal: clean up radar reflectivity data

- AP/GC contamination
- Biological targets
- Terrain effects
- Sun-strobes
- Radar interference
- Test patterns
- Returns in clear air

Performance target

• Challenge: Errors are additive.

- QC errors degrade quality of down-stream applications
- Especially for algorithms that accumulate data over space/time
- If a QC algorithm that is correct 99% of the time is used:
 - A national mosaic will have incorrect data 73% of the time
 - 130 radars
 - 0.99^130 = 0.27
 - A three-hour accumulation of precipitation (single radar) will be incorrect 30% of the time
 - 36 frames (assuming 5 minute volume scans)
 - 0.99^36 = 0.70
- Performance target
 - Keep 99.9% of good echoes (POD=0.999)
 - 99.9% of echoes that remain should be good (FAR=0.001)
 - Errors in previous example will be 12% and 4% if we can get 99.9% correct.

Existing quality control methods

- An extensively studied problem.
 - Thresholding
 - Median filters for speckle removal
 - Vertical tilt tests (Fulton et al, 1998)
 - Echo top and texture features (Steiner & Smith 2002)
 - Artifact detection (DQA, Smalley et al, 2004)
 - Texture features on all 3 moments (REC, Kessinger et al, 2003)
- Drawbacks with existing methods
 - None of them is designed to be "omnibus"
 - Mostly operate like clutter filters -- gate-by-gate
 - Parameters and thresholds chosen through experiment
 - Hard to get 99.9% accuracy without rigorous statistical methods.

NSST. THOMAS

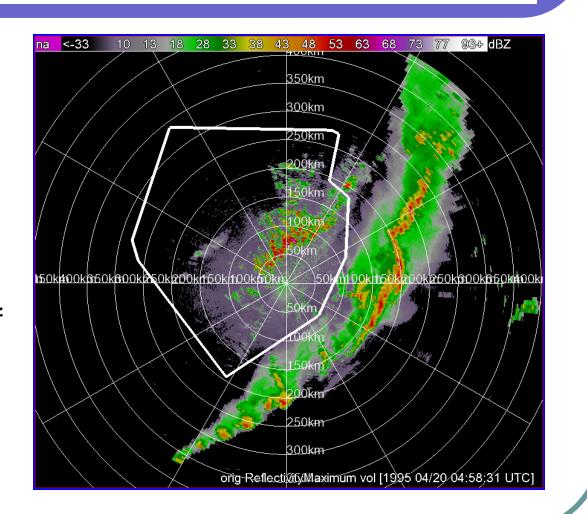
Quality Control Neural Network

- The QCNN approach is novel in 4 ways
 - Compute local 2D and 3D features
 - Texture features on all three moments.
 - Vertical features on latest ("virtual") volume
 - Can clean up tilts as they arrive and still utilize vertical features.
 - Identify the crucial / best features
 - Called "feature selection"
 - Determine optimal way to combine the features
 - Called "training" the neural network
 - A non-linear statistical technique called ridge regression
 - Identify regions of echo and classify them
 - Called "<u>segmentation</u>"
 - Not range-gate by range-gate
 - Reduces random errors

Human truthing

NISSI TURNE

- Examined radar data
- Other sensors
- Considered terrain, time of day, etc.
- Identified bad echoes



Feature selection

We considered 60+ features

- Included texture, image processing, tilt-test features suggested by various researchers.
- Experimented with different definitions
 - echo-top to include tilts above 1-degree only.
 - Tilt-test based on tilt at 3km height
 - Echo tops based on elevation angle or physical height
- Removed the features one at a time
 - If cross-entropy on validation set remained unchanged, leave that feature out permanently
- Ended up with 28.

Input features (final 28)

- Lowest velocity scan
 - Value, local mean, local variance, difference, minimum variance
- Lowest spectrum width scan: value
- Lowest reflectivity scan
 - Mean, variance, difference, variance along radials, difference along radials, minimum variance, SPIN, inflections along radial
- Second lowest reflectivity scan
 - Mean, variance, difference, variance along radials, difference along radials, minimum variance
- In virtual reflectivity volume
 - Vertical maximum, weighted average, vertical difference, echo top, ht of maximum, echo size, in-bound distance to 3km echo top, outbound distance to zero velocity
- Actually TWO neural networks
 - One for gates with velocity data
 - The other for gates with missing/range-folded velocity data

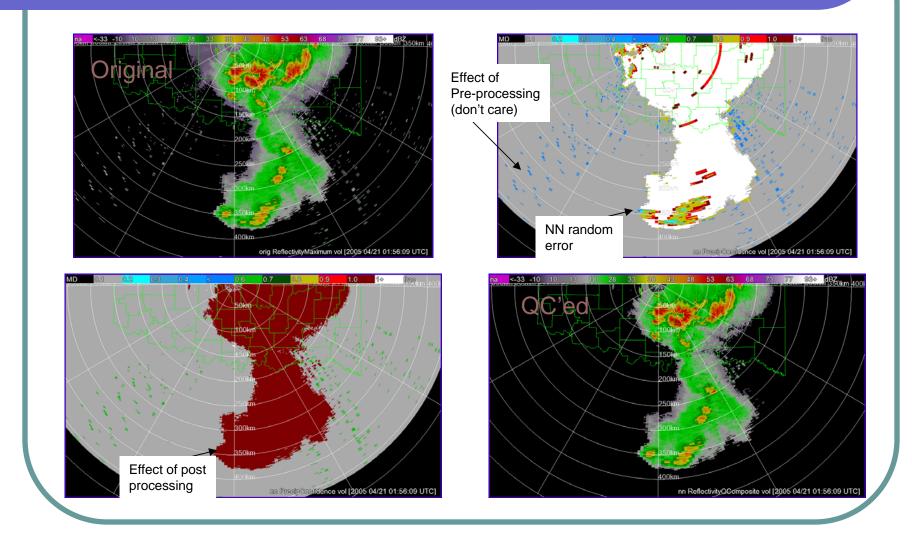
Pre-processing

- The NN is presented with "hard" and "significant" cases only.
 - Pre-classify "obvious" cases
 - Echo-top above 3 km
 - Velocity gates with exactly zero velocity
 - Reduces chance of sub-optimal optimization.
 - Also remove bad radials or test patterns
 - Not local features
 - NN is trained on local features only
 - Mark some range-gates as "don't care"
 - Range-gates near the edges of an echo
 - Local statistics are poor in such regions

Spatial post-processing

- A range-gate by range-gate classification is subject to random errors
 - This can cause severe degradation in data quality
 - Need to perform quality control on echo regions
- Identify echo regions ("blobs")
 - Using segmentation (Lakshmanan et. al 2003)
 - Average the NN classification on these blobs
 - Blob stays in or blob goes out.

Effect of pre & post processing



Our REC comparison

- We used the operational REC (ORPG Build 8)
 - We wanted to compare our research algorithm against the operational one.
 - Could have also used the DQA
- The operational REC is only for AP
 - But we compared on all types of QC problems.
 - Our goal was a omnibus QC algorithm
 - So, our numbers should not be used to gage how well the REC performs
 - Such a comparison would use only AP cases

Targeting a QC application

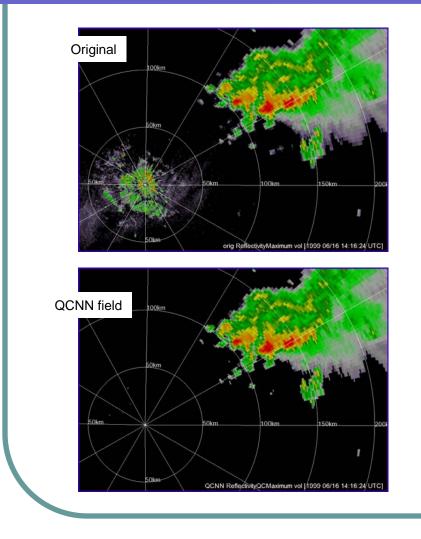
- Can improve QC performance by targeting
 - Targeting can be by region, season, reflectivity values, etc.
 - Example of seasonal targeting
 - Require blobs to have at least 0 dBZ in winter or 20 dBZ in summer.
 - Very useful in removing clear-air return.
 - Targeting limits search space for optimization: "If you don't need to be broad, you can be deep".
- Implications of such targeting:
 - Need to provide both edited and unedited data streams.
 - End-user can perform more targeted QC if needed.
- But targeting the type of echo is not a good idea
 - Should not have separate algorithms for AP, insects, artifacts etc.
 - What users want is an "edited" data stream
 - So, the user will use rules of thumb to combine
 - The QC algorithm should take care of combining in an optimal way.

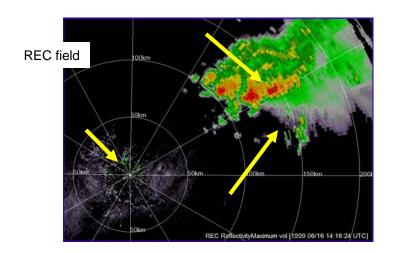
How to assess skill?

Use other radars/sensors

- Dual-pol hydromet classifier
 - Kessinger et. al (REC)
- Rain gages
 - Robinson et. al (2001)
- Limited by bias, coverage and availability of the other sensor
- We scored against human-edited data
 - On independent test cases.

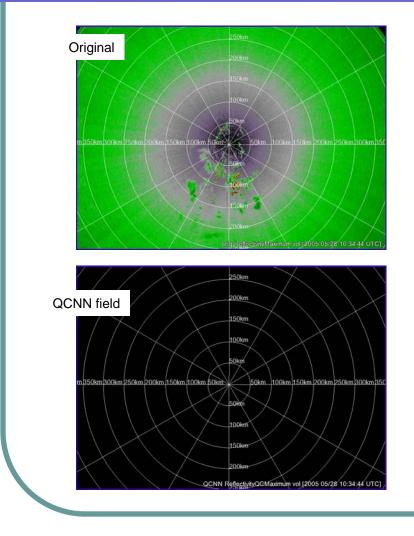
Test case: AP + precipitation

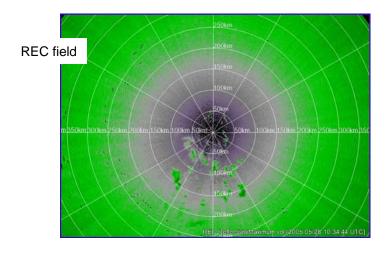




- Near-perfect correlation of QCNN field with human truthing.
- REC is mostly correct
 - Random errors within precip
 - Not all non-precip removed

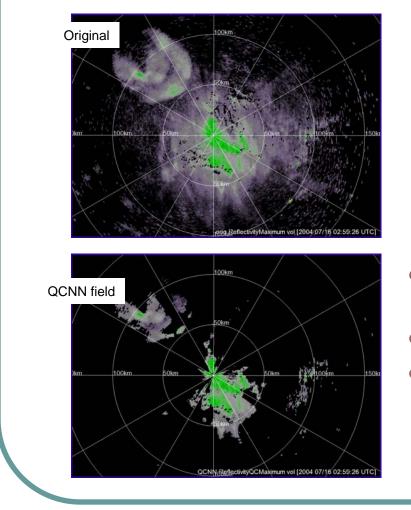
Hardware test pattern

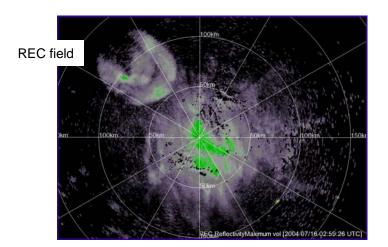




- Perfect correlation of QCNN with human truthing.
- The REC was not designed for this

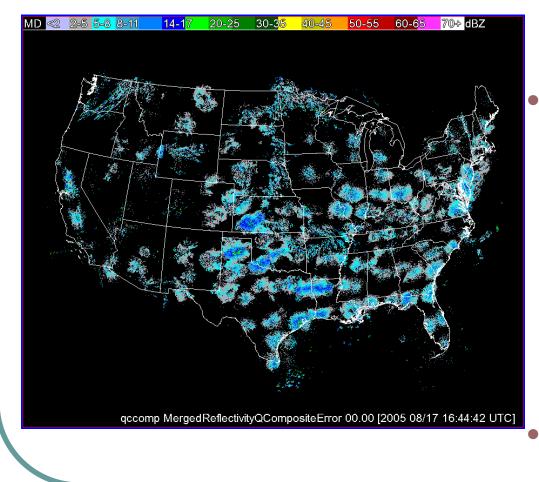
Extreme biological contamination





- QCNN had never encountered this kind of data during training.
- The REC was not designed for this
- Multi-sensor QC is useful
 - Use satellite/surface observations
 - Don't have statistics yet

Impact of QCNN on bloom ...



- Bloom is a common problem
 - Not addressed by any operational QC algorithm
 - Left: Echoes <u>removed</u> by the QCNN.
- Clear-air echoes have meteorological value
 - But nuisance for many downstream automated applications
 - McGrath et. al (2002) found that most MDA false alarms occur in clear-air situations.
 - Mazur et. al, (2003) found that using the QCNN, 92% of MDA false alarms in clear-air could be removed without impacting the probability of detection.
 - Stationary echoes impact motion estimates.
 - Another reason to provide both edited and unedited data streams

Performance Assessment Radar-only QCNN with no seasonal targeting

POD:	Product	Data range	Measure	No QC	REC	QCNN	
Probability	Composite	$> 0 \ dBZ$	CSI	0.61 +/- 0.06	0.59 +/- 0.057	0.86 +/- 0.011	
of detection			FAR	0.39 +/- 0.06	0.4 +/- 0.06	0.02 +/- 0.0072	
of "good"			POD	1 +/- 0	0.96 +/- 0.0031	0.88 +/- 0.0088	
echo			HSS	0.89 +/- 0.02	0.88 +/- 0.019	0.98 +/- 0.0016	
(fraction of	Composite	$> 10 \ dBZ$	CSI	0.68 +/- 0.071	0.66 +/- 0.069	0.96 +/- 0.0083	Visual quality
good echo			FAR	0.32 +/- 0.071	0.32 +/- 0.073	0.02 +/- 0.007 📍	95 to 97%
retained)			POD	1 +/- 0	0.94 +/- 0.0023	0.92 +/- 0.0039	
			HSS	0.93 +/- 0.017	0.93 +/- 0.016	0.99 +/- 0.0011	
FAR:	Composite	$> 30 \ dBZ$	CSI	0.92 +/- 0.02	0.84 +/- 0.014	1 +/- 0.00072	Effect on precip
Fraction of			FAR 🚽	0.08 +/- 0.02	0.09 +/- 0.011	0 +/- 0.00057 🖊	algorithms
echoes in			POD	1 +/- 0	0.92 +/- 0.0065	1 +/- 0.00029	99.9 to 100%
final			HSS	1 +/- 0.00064	0.99 +/- 0.00052	1 +/- 0	
product that	Composite	$> 40 \ dBZ$	CSI	0.91 +/- 0.023	0.8 +/- 0.013	1 +/- 0.00038	
are "bad"			FAR	0.09 +/- 0.023	0.1 +/- 0.0074	0 +/- 0.00039	
			POD	1 +/- 0	0.88 +/- 0.0088	1 +/- 0	
CSI:			HSS	1 +/- 0.00016	1 +/- 0.00018	1 +/- 0	
Critical	VIL	$> 0 \ kg/m^{3}$	CSI	0.53 +/- 0.16	0.48 +/- 0.13	1 +/- 0.0011	Effect on severe
			FAR 🗖	0.47 +/- 0.16	0.49 +/- 0.15	0 +/- 0.00053 /	weather algorithms
success			POD	1 +/- 0	0.9 +/- 0.0078	1 +/- 0.00084	99.9 to 100%
index			HSS	0.97 +/- 0.0091	0.97 +/- 0.0085	1 +/- 0	
	VIL	$> 25 \ kg/m^{3}$	CSI	1 +/- 0.0022	0.65 +/- 0.033	0.99 +/- 0.0027	
HSS:		,	FAR	0 +/- 0.0022	0.19 +/- 0.025	0 +/- 0.0022	
Heidke skill			POD	1 +/- 0	0.76 +/- 0.026	1 +/- 0.00075	
score			HSS	1 +/- 0	1 +/- 0	1 +/- 0	

Oct. 12, 2005

Summary

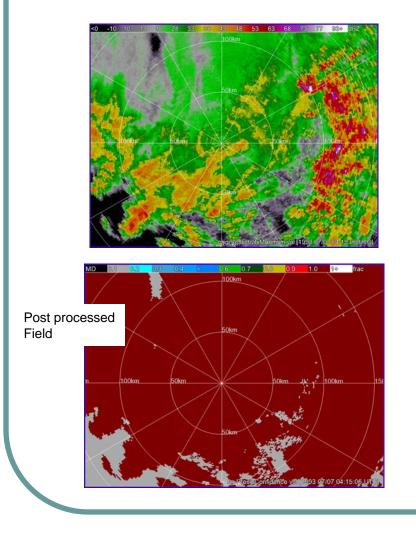
NSSI - HOLDER

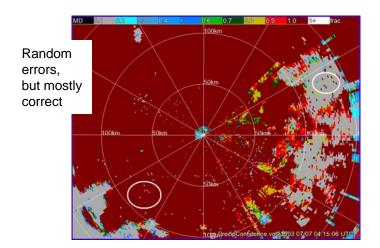
- QC errors, for algorithms that accumulate in space/time, are additive.
 - So the QC algorithm has to be near-perfect.
- The QCNN approach is "evidence-based":
 - A timely (virtual volume) method for computing features
 - A formal method of selecting features
 - An optimization procedure (ridge regression) to combine these features
 - Classify regions of echo, not range-gate by range-gate
- QCNN is an omnibus algorithm
 - Designed to handle AP/GC, radar test patterns, interference, sun strobes, clear air return
 - In shallow precipitation, strong convection, snow from all over the CONUS
 - Constantly adding new training cases (both good and bad echoes)
 - Better performance possible if the algorithm is targeted or if we use multi-sensor
- The approach can be adapted to ORDA
 - Collect enough training cases for both good and bad data
 - Possibly identify new features for new problems observed
- Technical details of algorithm
 - http://cimms.ou.edu/~lakshman/Papers/qcnnjam.pdf
 - Paper submitted to J. Applied Meteorology

Supplementary slides

Quality Control Neural Network

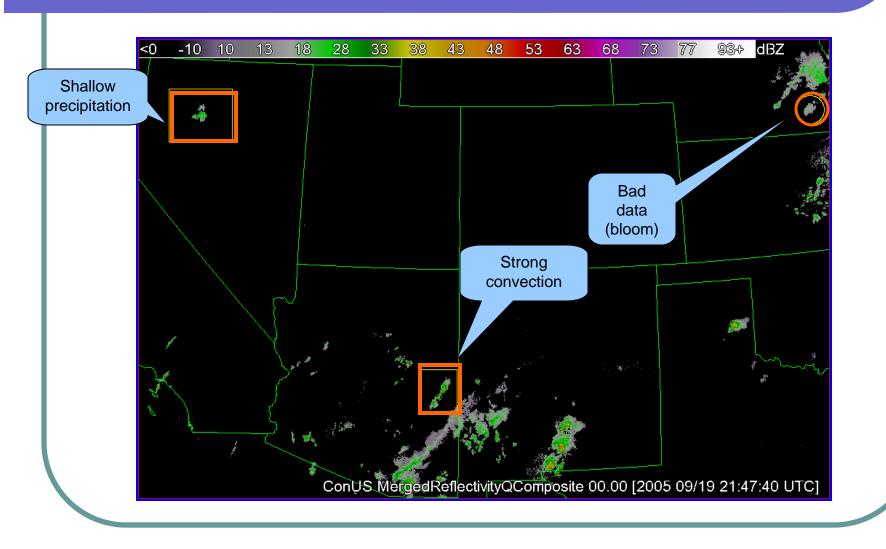
Spatial post-processing ...



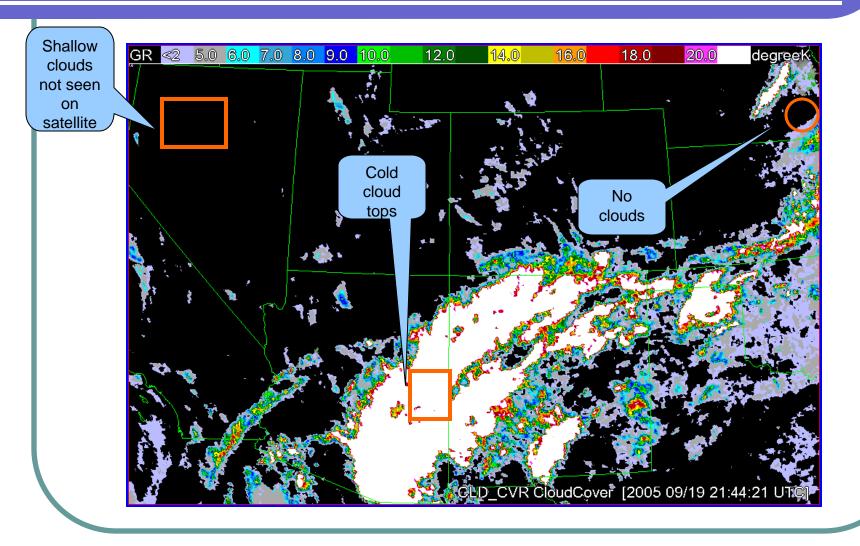


- Spatial post-processing can itself cause problems
- Here, AP embedded inside precipitation is not removed because of spatial postprocessing.
- A vector segmentation approach might help here.

Radar-only QC



Cloud cover (T_surface – T_IR)



Multi-sensor QC

