

RV Ambiguity Mitigation for the Enhanced TDWR

John Cho 30 March 2004

MIT Lincoln Laboratory —

NEXRAD TAC-1 JYNC 5/30/2007

Terminal Doppler Weather Radar (TDWR)

TDWR Operational Mission

- Wind shear detection around airport and approach/departure paths
- Targets primarily low altitude, near range
- Key data quality issues
 - First-trip protection from range folding
 - Velocity dealiasing
 - Clutter filtering (esp. moving clutter)
 - Low SNR velocity estimation

TDWR Radar Data Acquisition (RDA) Replacement Project

Engineering Prototype

MIT Lincoln Laboratory =

TDWR vs. WSR-88D RV Ambiguity

Current Procedure for Lowest Tilt Velocity Estimation

- 1st scan
 - Low PRF: Reflectivity to 460 km
- 2nd scan
 - Pick PRF to minimize obscuration of desired area
- 3rd scan
 - Pick another PRF to optimize velocity dealiasing
- Edit contaminated range cells
- Drawbacks
 - Limited 1st trip protection
 - 3 scans use up valuable time

Phase Code Processing + Dual PRF

NEXRAD TAC-7 JYNC 5/30/2007

Multi-PRI Processing Within Each Radial

- Only use PRIs that are not contaminated by out-of-trip signals
- Multiple PRI provides velocity dealiasing

Multi-PRI Clutter Filter

- MSE design algorithm for FIR filter [Chornoboy, 1993]
- Works well for block staggered pulse trains
- Operational clutter filter used in ASR-9 WSP signal processing

MIT Lincoln Laboratory

1st Trip Protection Comparison Chart

Out-of-trip Signal Type Technique	High Power or Wide Spectrum	Long Contiguous Range Extent
Multi-PRI Processing	Yes	No
Phase Code Processing	No	Yes

Radial-by-Radial Waveform Selection Algorithm

NEXRAD TAC-11 JYNC 5/30/2007

Simulation Input

• Stratiform background: -10 dBZ, northwesterly @ 35 m/s (velocity dealiasing test)

- Central patch: Peak 50 dBZ, zero velocity (clutter filter test)
- 1st trip north patch: Peak 20 dBZ, northwesterly @ 10 m/s (shear test)
- 2nd trip east patch: Peak 50 dBZ (strong, but limited-range-spread overlay test)
- 2nd trip south patch: Peak 20 dBZ (weak, but range-extensive overlay test)
- 2nd trip west patch: Peak 60 dBZ (strong and range-extensive overlay test)

MIT Lincoln Laboratory

Alternating-Radial Dual PRF With Pseudorandom Phase Code Processing

- Adaptive clutter filter (GMAP-like) works well
- Velocity dealiasing works well even in high gradient area (north patch edge)
- 1st trip protection works well only for south patch because overlay is weak with narrow spectral width (but note failure where overlay overlaps clutter zone)
- East and west patches are too strong (and too spectrally wide) for 1st trip protection

MIT Lincoln Laboratory =

Multi (8) PRI Waveform and Processing

- 4-level (60 dB, 40 dB, 20 dB, all pass) clutter filter selected on the fly: Works well, not as well as adaptive spectral filter
- Velocity dealiasing works well; however, velocity estimate quality not as high as for constant PRF
- 1st trip protection works almost completely for east patch (except for overlap area with clutter)
- South and west patches are too range-extensive to filter out for velocity estimates (reflectivity estimate is protected surprisingly well), although west patch is filtered better than with phase code processing

MIT Lincoln Laboratory -

Adaptive Radial-by-Radial Combination

- Algorithm used only long-PRI scan data, i.e., equivalent to real-time algorithm
- Algorithm selection did optimize first-trip protection of velocity
- The western patch overlay was too range-extensive and too strong for either waveform/processing type to eliminate from the velocity estimate
- 1st trip cannot be protected from out-of-trip overlay if there is significant clutter in the same cell

MIT Lincoln Laboratory -

Real Data Example: 1st Trip Protection of Velocity

Real Data Example: Reflectivity vs. "Truth"

- C-band TDWR has severe RV ambiguity
- LL-designed new RDA for the TDWR enables implementation of new algorithms to enhance base data quality
- Range-velocity ambiguity can be dramatically mitigated by combining multi-PRI and phase code processing techniques on an adaptive radial-by-radial basis
- Real-time implementation is next step