Radial Recombination

> For $1 / 2$ deg azimuth resolution only, 2 radials, Radial 1 and Radial 2, are combined when:

$$
0<=(\text { Radial } 1 \text { Azimuth - INT(Radial } 1 \text { Azimuth }))<=0.5
$$

and

$$
0.25<=(\text { Radial } 2 \text { Azimuth }- \text { Radial } 1 \text { Azimuth })<=0.75
$$

Rules for Assigning Azimuth Angle

> The following rules assume indexed beams: Radial 1 centered on the 0.25 deg and Radial 2 centered on the 0.75 deg.

- If Radial 1 is missing and Radial 2 is available, radial azimuth is assigned nearest 0.5 deg counterclockwise to Radial 2.
- If Radial 1 is available and Radial 2 is missing, radial azimuth is assigned nearest 0.5 deg clockwise from Radial 1.
- If Radial 1 and Radial 2 are missing, there will be no recombined radial.
- If Radial 1 and Radial 2 are both available, radial azimuth is assigned nearest 0.5 deg to average of the radial azimuths.
> For non-indexed beams, recombined radial azimuth is assigned the average of the 2 radial azimuths.
- If Radial 2 is missing, recombined radial azimuth is assigned Radial 1 azimuth +0.25 deg.

Reflectivity Recombination

> There are different recombination rules depending on reflectivity bin size and radial separation:

Reflectivity recombination rules for 0.25 km reflectivity samples and $1 / 2$ deg radial separation.

- The recombined reflectivity, Z_{r}, is the linear average of 8, 0.25 km reflectivity estimates Z_{ij}. Example:

	Radial 1	Radial 2
R_{4}	Z_{14}	Z_{24}
R_{3}	Z_{13}	Z_{23}
R_{2}	Z_{12}	Z_{22}
R_{1}	Z_{11}	Z_{21}

$Z_{r}=\left(Z_{11}+Z_{12}+Z_{13}+Z_{14}+Z_{21}+Z_{22}+Z_{23}+Z_{24}\right) / 8$
where $Z_{i j}$ and Z_{r} in $\mathrm{mm}^{6} / \mathrm{m}^{3}$. That is:

$$
\mathrm{Z}_{\mathrm{ij}}=10^{(\mathrm{Zij}(\mathrm{dBZ}) / / 10}
$$

The range assigned to Z_{r} is $\left(R_{2}+R_{3}\right) / 2$.

Reflectivity recombination rules for 0.25 km reflectivity samples and 1 deg radial separation.

- The recombined reflectivity, Z_{r}, is the linear average of 4 , 0.25 km reflectivity estimates Z_{i}. Example:

$Z_{\mathrm{r}}=\left(Z_{11}+Z_{12}+Z_{13}+Z_{14}\right) / 4$
The range assigned to Z_{r} is $\left(\mathrm{R}_{2}+\mathrm{R}_{3}\right) / 2$.

Reflectivity recombination rules for 1 km reflectivity samples and $1 / 2$ deg radial separation.

- The recombined reflectivity, Z_{r}, is the linear average of $2,1.0$ km reflectivity estimates Z_{ij}. Example:

$$
Z_{r}=\left(Z_{11}+Z_{21}\right) / 2
$$

The range assigned to Z_{r} is R_{1}

Rules for Handling Reflectivity Data Below Threshold

> If $Z_{i j}$ has a Noise-like return $\left(Z_{i j}(I C D)=0\right)$, power is estimated:

$$
\mathrm{P}_{\mathrm{ij}}=0.7 * 10 \text { (Noise (dB) +Z SNR Threshold (dB)/10) }
$$

. The resulting power is used to replace the Noise-like return:

$$
\begin{aligned}
& Z_{\mathrm{ij}}(\mathrm{dBZ})=10 \log \left(\mathrm{P}_{\mathrm{ij}}\right)-\text { Atmos*R} \\
& \mathrm{Z}_{\mathrm{ij}}=10^{(\mathrm{Zij}(\mathrm{dBZ}) / 10)} \\
& \text { SYSCAL }=\mathrm{dBZO}-\text { Noise }(\mathrm{dB})
\end{aligned}
$$

> The recombined reflectivity Z_{r} is censored on Z SNR Threshold:

$$
\begin{aligned}
& P_{r}=\left(10^{(Z \mathrm{Zr}(\mathrm{dBZ})-\mathrm{SYSCAL}+(\mathrm{Rj} * \mathrm{Atmos}) / / 10)}\right) / R^{2} \\
& \text { if }\left(P_{r}<10^{\text {(Noise (dB) }+Z \text { SNR Threshold (dB)// } 10}\right) \\
& Z_{r}(I C D)=0 \\
& \text { else } \\
& Z_{r}(d B Z)=10 \log Z_{r} \\
& Z_{r}(I C D)=\operatorname{NINT}\left[2.0 *\left(Z_{r}(d B Z)+32.0\right)\right]+2
\end{aligned}
$$

> Ensure all above threshold Z_{r} fall within ICD limits:

$$
\begin{aligned}
& \text { If }\left(Z_{r}(I C D)<2\right) \\
& Z_{r}(I C D)=0 \\
& \text { If }\left(Z_{r}(I C D)>255\right) \\
& Z_{r}(I C D)=255
\end{aligned}
$$

Velocity Recombination

, Velocity recombination only occurs with $1 / 2$ deg radial data.

Radial 1	Radial 2
$\mathrm{Z}_{1}, \mathrm{~V}_{1}$	$\mathrm{Z}_{2}, \mathrm{~V}_{2}$

> Given the reflectivity and velocity at constant range for Radial 1 $\left(Z_{1}, V_{1}\right)$ and Radial $2\left(Z_{1}, V_{2}\right)$ the recombined velocity V_{r} is:

$$
V_{r}=\left(Z_{1} * V_{1}+Z_{2} * V_{2}\right) /\left(Z_{1}+Z_{2}\right)
$$

where Z_{1} and Z_{2} are reflectivity estimates, in $\mathrm{mm}^{6} / \mathrm{mm}^{3}$ and

$$
\begin{array}{lll}
V_{j}=V_{j}(I C D) / 2-64.5, & j=1,2 & (0.5 \mathrm{~m} / \mathrm{s}) \\
V_{j}=V_{j}(I C D)-129.0, & j=1,2 & (1.0 \mathrm{~m} / \mathrm{s})
\end{array}
$$

> If either Z_{1} or Z_{2} are initially below SNR Threshold, an estimate is derived (See "Rules for Handling Reflectivity Data Below Threshold").

Rules for Handling Anomalies

> The following rules define special cases for velocity recombination:

- If $\mathrm{V}_{1}(I C D)=0$ and $\mathrm{V}_{2}(I C D)=0$ (Both below V SNR Threshold):

$$
V_{r}(I C D)=0
$$

- Else if Average power derived From Z_{1} and Z_{2} Below V SNR Threshold:

$$
\begin{aligned}
& Z=\left(Z_{1}+Z_{2}\right) / 2 \\
& P_{Z}=Z^{*} 10^{\left(-20 \operatorname{logR}-\text { SYSCAL }+R^{*} \text { Atmos }\right) / 10} \\
& \text { if }\left(P_{Z}<10^{(\text {Noise }(d B)+V \text { SNR Threshold (dB))/10 })}\right. \\
& V_{r}(I C D)=0
\end{aligned}
$$

- Else if Either $\mathrm{V}_{1}(\mathrm{ICD})>10 \mathrm{~V} \mathrm{~V}_{2}(\mathrm{ICD})>1$:

$$
\begin{aligned}
& \text { if }\left(V_{1}(I C D)<=1\right) \\
& V_{r}=V_{2} \\
& \text { if }\left(V_{2}(I C D)<=1\right) \\
& V_{r}=V_{1}
\end{aligned}
$$

- Else if $\left(\mathrm{V}_{1}(I C D)=1\right.$ and $\left.\mathrm{V}_{2}(I C D)=1\right)$ OR
$\left(V_{1}(I C D)=0\right.$ and $\left.V_{2}(I C D)=1\right) O R$ $\left(\mathrm{V}_{1}(I C D)=1\right.$ and $\left.\mathrm{V}_{2}(I C D)=0\right)$
$V_{r}(I C D)=1$

Rules for Handling Anomalies

> Dealiasing attempts to place both V_{1} and V_{2} in the same Nyquist co-interval

Velocity Dealiasing Rules When V_{1} and V_{2} Within the Same PRF Sector

- if($\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)>\mathrm{V}_{\text {_ }}$ Nyquist) $\mathrm{V}_{2}=\mathrm{V}_{2}+2 * \mathrm{~V}_{-}$Nyquist
- if($\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)>\mathrm{V}_{-}$Nyquist)
$\mathrm{V}_{1}=\mathrm{V}_{1}+2 * \mathrm{~V}_{-}$Nyquist
Velocity Dealiasing Rules When V_{1} and V_{2} Within Different PRF Sectors
- Dealiasing is not attempted in this case. Assume the velocity having the smaller Nyquist velocity is missing.
> Ensure V_{r} (ICD) is within ICD limits:
- $\mathrm{V}_{\mathrm{r}}(\mathrm{ICD})=$ NINT(Velocity_Reso*V $\left.\mathrm{V}_{\mathrm{r}}+127.0\right)+2$
- if($\mathrm{V}_{\mathrm{r}}($ ICD) <2)

$$
V_{r}(I C D)=2
$$

- if $\left(V_{r}(I C D)>255\right)$

$$
V_{r}(I C D)=255
$$

Spectrum Width Recombination

> Spectrum Width recombination only occurs with $1 / 2$ deg radial data.

Radial 1	Radial 2
$\mathrm{Z}_{1}, \mathrm{~V}_{1}, \mathrm{~W}_{1}$	$\mathrm{Z}_{2}, \mathrm{~V}_{2}, \mathrm{~W}_{2}$

> Given the reflectivity, velocity and spectrum width at constant range for Radial $1\left(Z_{1}, V_{1}, W_{1}\right)$ and Radial $2\left(Z_{1}, V_{2}, W_{2}\right)$ the recombined spectrum width W_{r} is:

$$
W_{r}=\operatorname{SQRT}\left(\left(Z_{1} *\left[W_{1}^{2}+\left(V_{1}-V_{r}\right)^{2}\right]+Z_{2}^{*} *\left[W_{2}^{2}+\left(V_{2}-V_{r}\right)^{2}\right]\right) /\left(Z_{1}+Z_{2}\right)\right)
$$

where Z_{1} and Z_{2} are reflectivity estimates, in $\mathrm{mm}^{6} / \mathrm{mm}^{3}$ and $W_{j}=W_{j}(I C D) / 2-64.5, j=1,2$.
> If either Z_{1} or Z_{2} are initially below SNR Threshold, an estimate is derived (See "Rules for Handling Reflectivity Data Below Threshold").

Rules for Handling Anomalies

> The following rules define special cases for spectrum width recombination:

- If $W_{1}(I C D)=0$ and $W_{2}(I C D)=0$ (Both $<W$ SNR Threshold):

$$
W_{r}(I C D)=0
$$

- Else if Avg power from Z_{1} and $Z_{2}<W$ SNR Threshold:

$$
Z=\left(Z_{1}+Z_{2}\right) / 2
$$

$$
P_{Z}=Z^{*} 10^{\left(-20 \operatorname{logR}-\text { SYSCAL }+R^{*} A t m o s\right) / 10}
$$

$$
\text { if }\left(P_{z}<10^{(\text {Noise (dB) }+ \text { W SNR Threshold (dB))/ } 10}\right)
$$

$$
W_{r}(I C D)=0
$$

- Else If Either $W_{1}(I C D)>10 R W_{2}(I C D)>1$

$$
\begin{gathered}
\text { if }\left(W_{1}(I C D)<=1\right) \\
W_{r}=W_{2} \\
\text { if }\left(W_{2}(I C D)<=1\right) \\
W_{r}=W_{1}
\end{gathered}
$$

- Else if $\left(W_{1}(I C D)=1\right.$ and $\left.W_{2}(I C D)=1\right) O R$

$$
\left(W_{1}(I C D)=0 \text { and } W_{2}(I C D)=1\right) O R
$$

$$
\left(W_{1}(I C D)=1 \text { and } W_{2}(I C D)=0\right)
$$

$W_{r}(I C D)=1$
, Ensure W_{r} (ICD) is within ICD limits:

$$
\begin{aligned}
& W_{r}(I C D)=\text { NINT }\left(2 * W_{r}+63.5\right)+2 \\
& \text { if }\left(W_{r}(I C D)<2\right) \\
& W_{r}(I C D)=2 \\
& \text { if }\left(W_{r}(I C D)>255\right) \\
& W_{r}(I C D)=255
\end{aligned}
$$

