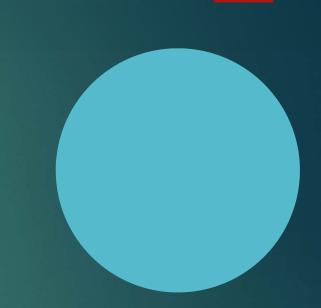
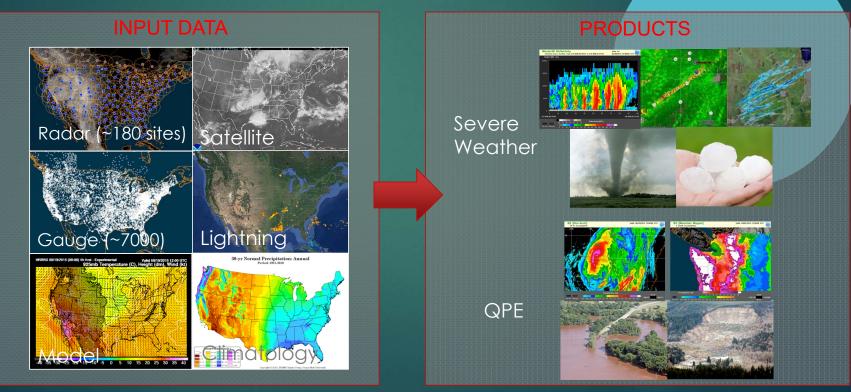
MRMS Version v12 Update

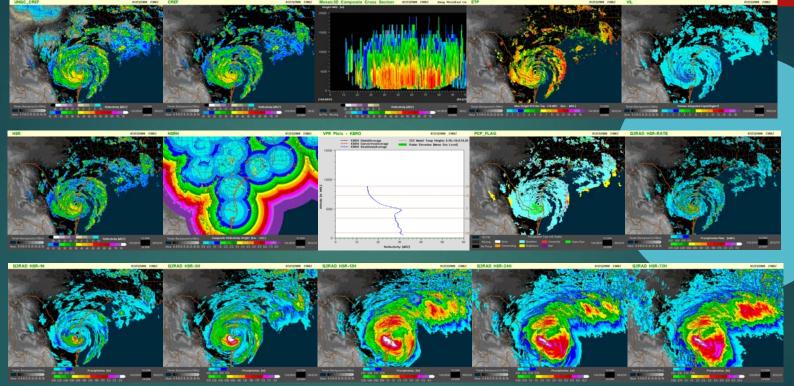

Jian Zhang¹, Kenneth Howard¹, Steve Martinaitis^{1,2}, Lin Tang^{1,2}, Steve Cocks^{1,2}, Andrew Osborne^{1,2}, Micheal Simpson^{1,2}, Carrie Langston^{1,2}, Brian Kaney^{1,2}, Karen Cooper^{1,2}, Ami Arthur^{1,2}, Jeff Brogden^{1,2}, and Wolfgang Hanft^{1,2}

¹NOAA/National Severe Storms Lab ²CIMMS, University of Oklahoma

Norman, OK

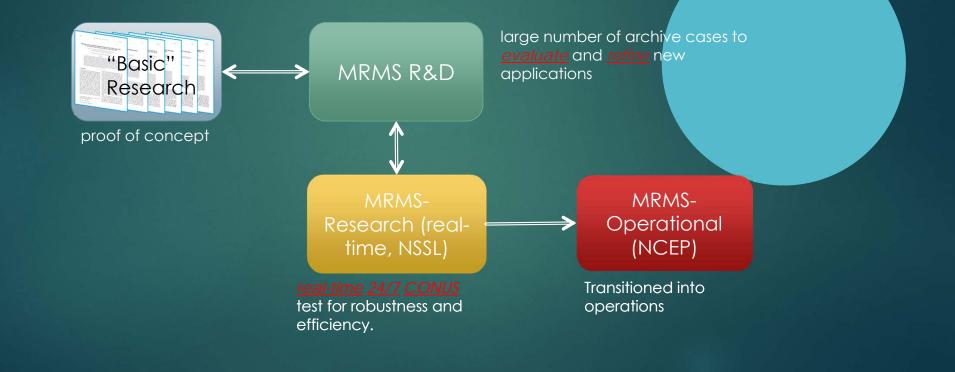

Outline

- Background
- ► MRMS version 12 QPE updates
- Summary and Future Work



What is MRMS?

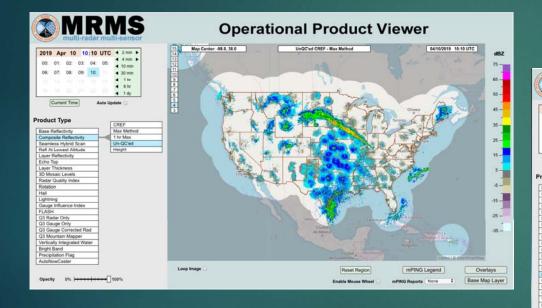
An <u>operational</u> system for the integration of <u>Multi-Radar Multi-Sensor</u> data and creation of high-resolution (*1km, 2min*) severe weather and Quantitative Precipitation Estimation products over CONUS and southern Canada.

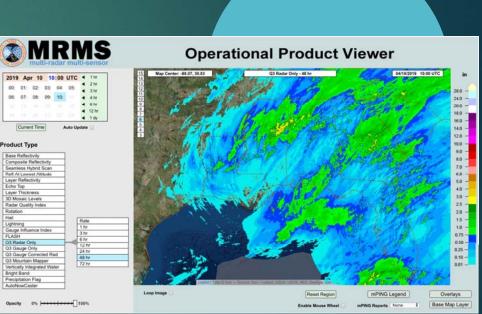

What is MRMS?

MRMS produces and disseminates (via SBN and LDM) a suite of **100+** high resolution product grids over North America **(1-km, 2 to 15 minutes)** for use in model data assimilation, severe weather, aviation and hydrometeorology (flooding and water resource management).

What is MRMS?

A <u>research</u> platform for evaluations and refinements of *new severe weather* and hydrological applications and to facilitate their <u>transition into operations</u>.


Current MRMS Oper. QPEs (v11.6)


- Radar-Based QPE [<u>Q3RAD</u>]
 - Precipitation rate, type, quality index, 1hr accumulation (2 min update cycle)

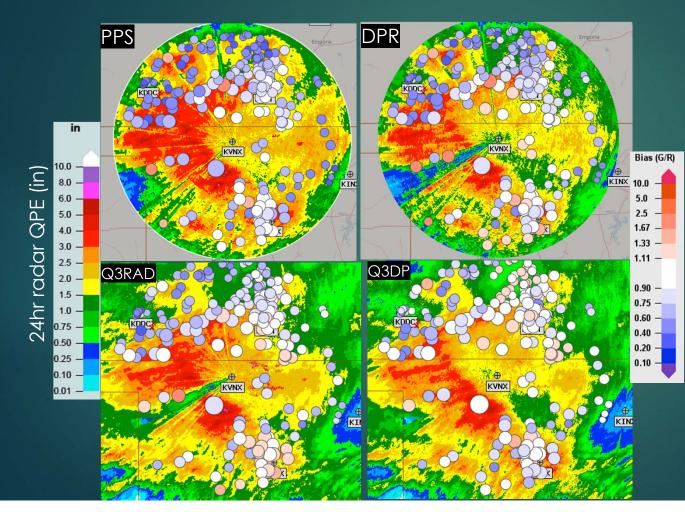
- 3, 6, 12, 24, 48, 72hr accumulations (1 hr)
- ~ 2 min latency, a forcing for FLASH
- an input to RFCs' MPE and a situational awareness product for WFOs
- Automated gauge QC (QC approx. 15,000 gauge observations per hour)
- Local Gauge Bias Corrected Radar QPE [Q3GC]
 - 1, 3, 6, 12, 24, 48, 72hr accumulations, and gauge influence index (1 hr update cycle)
 - ~ 1 hr latency, an input to RFCs' MPL
- Gauge and Climatology merged QPE Mountain Mapper [Q3MM]
 - 1, 3, 6, 12, 24, 48, 72hr accumulations (1 hr update cycle)
 - ~ 1 hr latency
- CONUS domain, 1km resolution

MRMS Operational Products

https://mrms.nssl.noaa.gov/qvs/product_viewer.php


Next Update(v12)

- Radar-Based QPE [Q3DP]
 - Precipitation rate, type, quality index, 1hr accumulation (2 min update cycle)
 - 3, 6, 12, 24, 48, 72hr accumulations (1 hr)
 - A new dual-pol synthetic QPE based on specific attenuation (A), specific differential phase (K_{DP}), and reflectivity (Z) with vertical profile correction.
 - Evaporation correction
 - Accumulation Quality Index
 - Azimuth Rotary Joint check and mitigation protocal
- Multi-Sensor QPE [Q3MS]
 - 1, 3, 6, 12, 24, 48, 72hr accumulations (1 hr update cycle)
 - A combination of dual-pol radar, gauge, precip climatology, and model QPF (HRRR forecast 01h)
 - Two passes: #1 with 1hr latency and #2 with 2hr latency
- CONUS, Alaska, Caribbean: 1km resolution
- Hawaii and Guam: 500 m resolution


Q3DP

A new dual-pol radar synthetic QPE combining R(A), $R(K_{DP})$, and R(Z) was developed

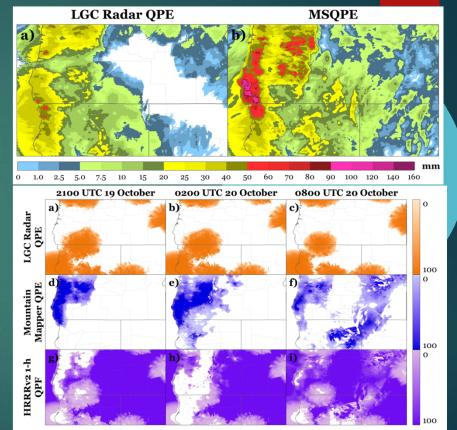
- *R(A) is applied in areas where radar beam is below the melting layer and sampling rain only*
- R(K_{DP}) is applied in areas of hail
- *R(Z) with a vertical profile of reflectivity correction is applied elsewhere*
- Evaluations for one year across CONUS showed significant improvements over current operational radar QPEs, especially in the warm season heavy to extreme rainfall
- Less sensitivity to partial beam blockages and to calibration errors in Z and Z_{DR} than current operational radar QPEs

V12 QPE Improvement: Partial Blockage 10

12Z 6/24 - 12Z 6/25/2018 KVNX, 210 km range Number of gauges: 229 Gauge mean: 1.59 in Gauge max: 5.68 in

Prod	Bias (Q/G)	MAE (in)	CC
PPS	1.48	0.78	0.70
DPR	1.31	0.59	0.72
Q3RAD	1.14	0.37	0.81
Q3DP	1.11	0.31	0.87

Calibration:

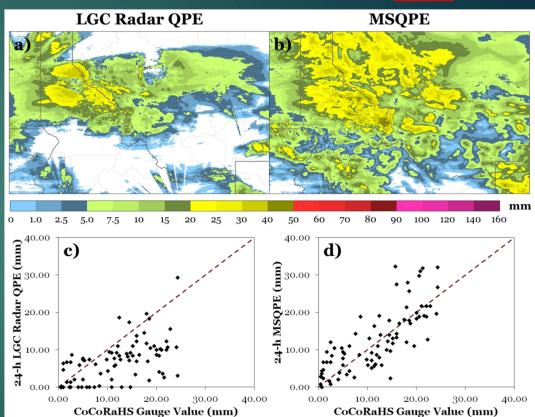

• Z bias: ~ (+ 0.82dBZ)

• Z_{DR} bias: ~ (+ 0.13dB)

Q3DP did not exhibit the blockage artifacts to the SW of KVNX

MRMS Multi-Sensor QPE Product (MSQPE)

- Seamlessly blends multiple precipitation platforms using physically-based methodology for optimal precipitation coverage and accuracy
 - MRMS Locally Gauge-Corrected Radar QPE (LGC QPE) usingMRMS dual-pol synthetic radar QPE w/ evaporation correction
 - MRMS Mountain Mapper QPE
 - ► HRRRv2 1-hr QPF
 - Precipitations weighted using updated MRMS RQI product, atmospheric and surface conditions, terrain, and precipitation properties

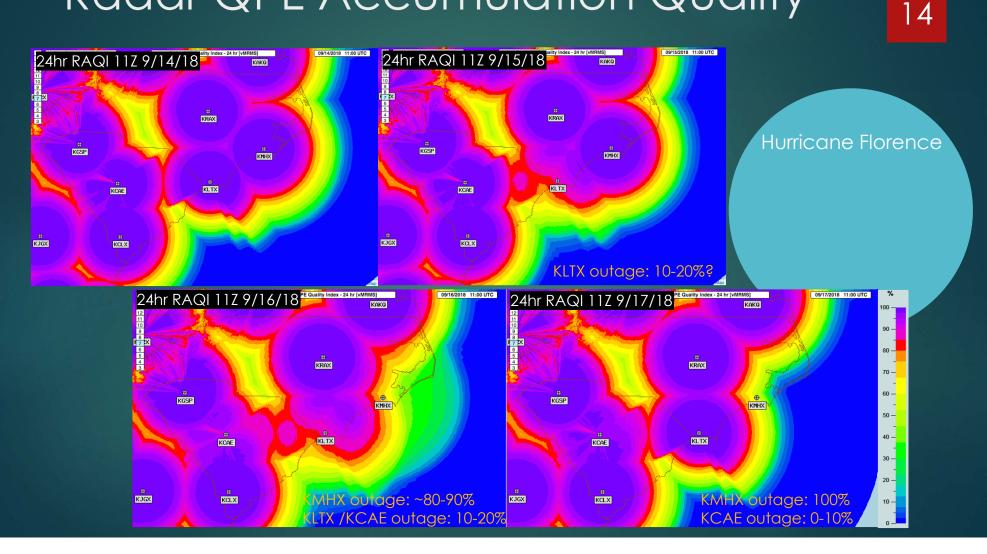

24-h accumulation of MRMS LGC radar QPE and MSQPE QPE along with example hourly percent contribution of each product for the 24-h period ending 1500 UTC 20 October 2017.

Results of MSQPE Study in Western CONUS

 Overall results showed significant improvement in precipitation coverage and accuracy over the western CONUS

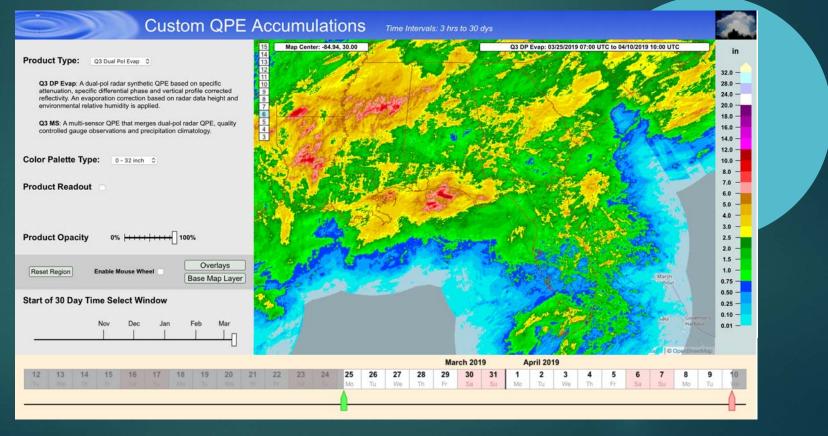
Average (43 Events)	LGC Radar QPE	MSQPE
Mean Bias Ratio	0.747	0.987
ME (mm)	-1.526	-0.218
MAE (mm)	2.780	2.480
Correlation	0.752	0.827

Gauge vs. QPE comparisons noted significant reductions of missing precipitation while minimizing introduction of false precipitation coverage



Example Case Study Event: 24-h precipitation accumulation of MRMS LGC radar QPE and MSQPE QPE across eastern Washington, northern Idaho, and western Montana for the 24-h period ending 1400 UTC 18 February 2018.

Q3MS Performance: 14Z 10/13/2017 13


Vs. CoCoRaHS gauges LGC QPE MSQPE MAE (mm) 4.623 2.769 ME (mm) -3.683 -0.965 0.649 **Bias Ratio** 0.907 Correlation 0.707 0.899 QPE (in) 2.0 LGC Radar Scatterplot Scatterplot **Multi-Sensor** Scale Scale 1.5 1.5 2.0 in 🔻 2.0 in 🔻 QPE QPE 1.0 1.0 0.5 Gauge (in) Gauge (in) 0.5 1.0 1.5 2.0 2.0

Radar QPE Accumulation Quality

MRMS Long Accumulations

https://mrms.nssl.noaa.gov/qvs/long_qpe_accum/

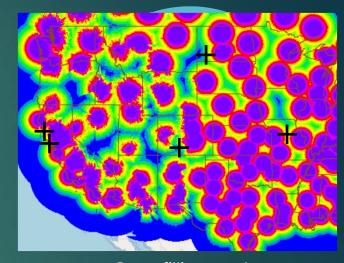
v12 MRMS QPE for oCONUS

Processes of adding an MRMS domain

- Identify data sources:
 - Model
 - Gauge
 - ► Satellite
- Develop ingest, QC and remapping software
- Implement existing algorithms and evaluate performance
 - ► Not perfect but provide a baseline and benchmark
- Identify deficiencies and develop refinements/new algorithms
- RFC/WFO inputs are very important.

141	
	RAP 13km

CONUS	Hawaii	Alaska	Caribbean	Guam
HRRR+eRAP 13km	eRAP 13km	HRRR_AK + eRAP 13km	eRAP13km	GFS


Summary

MRMS v12 will include a number of major updates to QPE:

- A new dual-pol radar synthetic QPE using R(A), R(K_{DP}) and R(Z)
 - Provide better estimates for heavy to extreme rain
 - Mitigate underestimation in heavy rain mixed with hail
 - Immune to partial beam blockages (up to 90-95%) and calibration biases
- An evaporation correction to reduce wet bias in dry environment.
- An automated hardware problem mitigation
 - to avoid removal of precipitation echoes due to corrupted dual-pol data
- New radar accumulation quality index (RAQI) to show radar outage & range degradation
- A new multi-sensor QPE merging radar, gauge, precipitation climatology, model QPF, and satellite QPE, which will provide improved estimates in radar gaps
- Initial MRMS product suites for oCONUS domains: Hawaii, Alaska, Caribbean and Guam
- ✤ To be transitioned into operations Q2 FY2020

Ongoing and Future Work

- To address issues identified by RFCs/WFOS
- Refinements of the dual-pol synthetic QPE
 - For light/moderate stratiform rain
 - For oCONUS domains
- Enhancements of the multi-sensor QPE
 - For oCONUS domains
- Gauge wind correction
- Gauge meta data consolidation (w/ MADIS group)
- Software development for the Canadian radar dual-pol upgrade
- Snow water equivalent QPE using dual-pol radar data
- Integrating gap-filling radars
- Satellite QPE enhancements (w/ NESDIS)

Gap-filling radars