MEMORANDUM FOR:	Matthew M. Kuzemchak, NWS NEPA Coordinator
FROM:	Jessica Schultz, Radar Focal Point, National Weather Service
SUBJECT:	Finding of No Significant Impact for Lowering the Minimum Scan Angle of the KMTX Weather Surveillance Radar - Model 1988 Doppler (WSR-88D) serving the Salt Lake City, Utah, area – DECISION MEMORANDUM

Based on the subject environmental assessment, I have determined that no significant environmental impacts will result from the proposed action. I request your concurrence in this determination by signing below. Please return the memorandum for our files.

1.	I concur//signed 9/11/18//	_ Date
2.	I do not concur	Date

Attachment

MEMORANDUM

TO: All Interested Government Agencies and Public Groups

Under the National Environmental Policy Act, an environmental review has been performed on the following action.

TITLE: Lowering the Minimum Scan Angle of the KMTX Weather Surveillance Radar -

Model 1988 Doppler (WSR-88D) serving the Salt Lake City, UT, area

LOCATION: Promontory Mountains, Box Elder County, UT

SUMMARY:

The National Weather Service (NWS) owns and operates the existing Weather Surveillance Radar, Model 1988 Doppler (WSR-88D) serving the Salt Lake City, UT, area. The radio call letters of the radar are KMTX and the radar is located at a remote mountain top in the Promontory Mountains, about 23 miles west of downtown Ogden, UT, and about 44 miles northwest of downtown Salt Lake City, UT. The KMTX WSR-88D was commissioned in June 1995 and is one of 159 WSR-88Ds in the nationwide network.

The KMTX WSR-88D antenna transmits a narrow focused main beam with a width of 1 degree. In normal operation, the WSR-88D antenna rotates horizontally to cover all directions (i.e. azimuths). The radar antenna also varies the scan angle at which it points with respect to the horizon. The scan angle is measured along the axis of the main beam and can be changed in 0.1 deg increments. Currently, the KMTX radar operates at a minimum of scan angle of +0.5 degrees (deg) above the horizon. NWS proposes to reduce the minimum scan angle of the KMTX WSR-88D from the current minimum of +0.5 deg to 0.0 deg (the proposed action). Lowering the minimum scan angle would provide enhanced coverage of the lower portions of the atmosphere. No construction activities or physical modification of the KMTX WSR-88D would be required to implement the proposed action; the only change would be to the radar's operating software.

RESPONSIBLE OFFICIAL: Jessica Schultz, Radar Focal Point, National Weather Service, 1200 Westheimer Drive, Norman, OK 73069, Tel. (405)573-8808, email: jessica.a.schultz@noaa.gov

The environmental review process led us to conclude that this action will not have a significant effect on the human environmental. A copy of the finding of no significant impact, and the supporting final environmental assessment is enclosed for your information. Please submit any comments to the responsible official named above by **October 12, 2018**. Also, please send one copy of your comments to me in 1325 East-West Highway, Room 3353, Silver Spring, MD 20910.

Sincerely

Matthew M. Kuzemchak NWS NEPA Coordinator

Enclosure

FINDING OF NO SIGNIFICANT IMPACT (FONSI)

LOWERING THE MINIMUM SCAN ANGLE OF THE WEATHER SURVEILLANCE RADAR-MODEL 1988, DOPPLER (WSR-88D) SERVING THE SALT LAKE CITY, UTAH, AREA

ENVIRONMENTAL ASSESSMENT (EA) SUMMARY

Purpose and Need

NWS is part of the National Oceanic and Atmospheric Administration (NOAA) of the U.S. Department of Commerce. NWS operates a nationwide network of 159 Doppler weather radars, which collect data on atmospheric conditions, and include precipitation type and intensity, wind speed and direction, and storms, from near ground level to above 10,000 feet in elevation above the ground. NWS staff uses these data to prepare daily forecasts and issue severe weather watches and warnings, and to further NWS's mission to protect and enhance life and property and the nation's economy. The WSR-88D serving the Salt Lake City, UT, area has radio call letters KMTX and is located at a remote mountain crest about 44 miles northwest of downtown Salt Lake City, UT. Operating this radar at lower scan angles would increase the area of radar coverage, providing additional data on atmospheric conditions to NWS forecasters and other data users. The area covered at 2,000 feet above site level (ASL) would increase by 94.8%.

Description of Proposed Action

The KMTX WSR-88D is an S-band Doppler, dual polarized weather radar, which NWS uses to collect meteorological data to support weather forecasts and severe weather warnings for northern Utah and adjoining parts of Nevada, Idaho, and Wyoming. The KMTX WSR-88D antenna transmits a narrow focused main beam with a width of 1 degree. In normal operation, the WSR-88D antenna rotates horizontally to cover all directions (i.e. azimuths). The radar antenna also varies the scan angle at which it points with respect to the horizon. The scan angle is measured along the axis of the main beam and can be changed in 0.1 deg increments. Currently, the KMTX radar operates at a minimum scan angle (at the center of the beam) of +0.5 degrees (deg) above the horizon. NWS proposes to reduce the minimum scan angle of the KMTX WSR-88D from the current minimum of +0.5 deg to 0.0 deg (the proposed action). Lowering the minimum scan angle would provide enhanced coverage of the lower portions of the atmosphere. No construction activities or physical modification of the KMTX WSR-88D would be required to implement the proposed action; the only change would be to the radar's operating software.

Alternatives Considered

NWS evaluated the benefits and potential impacts of lowering the minimum scan angle of the KMTX WSR-88D to each angle between +0.4 and -0.2 deg in 0.1 degree increments. That

analysis found that a minimum scan angle of 0.0 deg would result in improvement of radar coverage while not causing significant environmental impacts. Based on this information, NWS selected a minimum scan angle of 0.0 deg as the proposed action.

Operating the KMTX WSR-88D at minimum scan angles between +0.4 deg and -0.2 deg other than the proposed 0.0 deg would result in similar environmental effects as the proposed action. Similar to the proposed action, application of Mitigation Measure 1 during infrequent stationary antenna operation would preclude RF exposure at the nearby communications tower exceeding occupational or general public safety levels. Like the proposed action, significant environmental effects would not result. Minimum scan angles between 0.4 deg and 0.1 deg would increase the radar's coverage area, but by less than the proposed action (i.e. minimum scan angle of 0.0 deg). Minimum scan angles of -0.1 or -0.2 deg would not substantially improve radar coverage and would have the drawback of increasing ground clutter returns. Because a minimum scan angle of 0.0 deg would result in the greatest improvement in radar coverage area while avoiding significant environmental impacts and potentially adverse increase in ground clutter returns, NWS rejected the alternatives of operating the KMTX WSR-88D at minimum scan angles of +0.4, +0.3, +0.2, +0.1, -0.1, or -0.2 deg.

Environmental Consequences

NWS prepared an Environmental Assessment (EA) analyzing the potential environmental consequences of the implementing the proposed action in compliance with the President's Council on Environmental Quality (CEQ) National Environmental Policy Act implementing regulations (40 Code of Federal Regulations Parts 1500 – 1508) and NOAA Administrative Order (NOA) 216-6A: Compliance with the National Environmental Policy Act, Executive Orders 12114, Environmental Effects Abroad of Major Federal Actions; 11988 and 13690, Floodplain Management; and 11990 Protection of Wetlands. (April 22, 2016).

Lowering the minimum scan angle of the KMTX WSR-88D would not require physical changes to the radar, vegetation removal, or ground disturbance. The proposed action would not result in significant effects in the following subject areas:

- Land Use and Coastal Zone Management
- Geology, Soils, and Seismic Hazards
- Drainage and Water Quality
- Transportation
- Air Quality
- Flood Hazards
- Wetlands
- Biological Resources / Protected Species
- Cultural and Historic Resources
- Environmental Justice Socioeconomic Impacts

- Farmlands
- Energy Consumption
- Visual Quality/ Light Emissions
- Solid and Hazardous Waste
- Wild and Scenic Rivers.

At a scan angle of 0.0 deg, the closest terrain that would be within the WSR-88D main beam is a ridge crest located 2.2 miles north-northwest of the WSR-88D. That ridge crest is farther from the WSR-88D than applicable safety setback distances and no hazards to persons or potentially sensitive activities would result. Two communications towers are located in the vicinity of the KMTX WSR-88D and are tall enough to be directly illuminated by the WSR-88D main beam when operating at the proposed minimum scan angle of 0.0 deg. During infrequent stationary antenna operation, RF exposure levels would exceed ANSI/IEEE, FCC, and OSHA safety levels for exposure of the general public and workers at the uppermost portion of the nearest communications tower (125 feet east of the WSR-88D). RF exposure levels at the upper portions of the more distant communications tower (2,600 feet SE) would comply with ANSI/IEEE, FCC, and OSHA safety levels for general public and occupational exposure. It is very unlikely that the general public would be present at the upper portions of these communications tower. Workers could access the towers on rare occasions. Mitigation Measure 1 would prevent RF exposure hazards to workers or the general public if present on the nearest tower.

MITIGATION MEASURE 1: During infrequent stationary antenna operation, the WSR-88D antenna would not be directed at the nearby communications tower about 125 feet to the east. Azimuths 86 to 90 would be avoided.

Because the KMTX WSR-88D operates in a frequency band dedicated to government radiolocation services and the main beam would not impinge on the ground surface in the radar vicinity, the proposed action would not cause radio interference with television, radio, cellular telephone, personal communications devices (PCDs), electro-explosive devices, fuel handling, active implantable medical devices, or astronomical observatories.

Public and Agency Review of the Draft EA

The NWS distributed the Draft EA to interested members of the public and government agencies for review and comment. Comments on the Draft EA were accepted by NWS during a 41-day comment period ending on August 24, 2018. Comment letters were received from two parties. One letter pointed requested minor text corrections, which have been incorporated into the Final EA. A second letter expressed support for the proposed action.

FINDING OF NO SIGNIFICANT IMPACT

The CEQ Regulations state that the determination of significance using an analysis of effects

requires examination of both context and intensity, and lists ten criteria for intensity (40 CFR 1508.27). In addition, NAO 216-6A, Section 6.01(b) 1-11, provides eleven criteria, the same ten as the CEQ Regulations and one additional for determining whether the impacts of a proposed action are significant. Each criterion is discussed below with respect to the proposed action and considered individually as well as in combination with the others.

1. Can the proposed action reasonably be expected to cause both beneficial and adverse impacts that overall may result in a significant effect, even if the effect will be beneficial?

No. The EA report analyzes the potential for implementation of the proposed action to cause environmental consequences based on established standards and criteria. The proposed action would not require construction or vegetation removal and would not result in ground disturbance. The only environmental consequence would be a slight increase in RF power density in a small portion of the atmosphere. During normal operations, WSR-88D RF emissions would comply with national and international safety standards for human exposure. During infrequent stationary antenna operation, NWS would implement Mitigation Measure 1. This measure would ensure that RF levels at the existing communications tower to the east of the WSR-88D would conform to safety standards for human exposure.

2. Can the proposed action be expected to significantly affect public health or safety?

No. The lower minimum scan angle would not result in the KMTX WSR-88D main beam impinging on the ground within 2.2 miles of the WSR-88D site. The proposed action would slightly increase RF exposure levels in the vicinity of the KMTX WSR-88D. As described in the answer to question 1 above, RF emissions from the WSR-88D during normal operation with a rotating antenna operating at a minimum scan angle of 0.0 deg would conform to ANSI/IEEE, FCC, and OSHA safety standards at all ground locations and structures in the vicinity of the WSR-88D. RF emissions from the WSR-88D would also comply with RF exposure standards for implantable medical devices established by the FCC and the Association for Advancement of Medical Instrumentation and would not interfere with operation of those devices. During infrequent stationary antenna operation, RF levels could exceed safety standards for exposure of the general public and workers if present on the uppermost portion of the communications tower about 125 feet east of the WSR-88D. Implementation of Mitigation Measure 1 would prevent that hazard.

3. Can the proposed action reasonably be expected to result in significant impacts to unique characteristics of the geographic area, such as proximity to historic or cultural resources, park lands, prime farmlands, wetlands, wild and scenic rivers, or ecologically critical areas?

No. The proposed action's area of potential effect (APE) is defined as area within 6,320 feet of the WSR-88D where RF hazards to potentially RF-sensitive activities could result. The closest place listed on the National Register of Historic Places are the Ogden-Lucin Cut-off Trestle,

about 4.4 miles south-southwest of the WSR-88D, and the Golden Spike National Historic Site, about 24 miles north. No historic places are within the APE and none would be affected by the proposed action.

.4. Are the proposed action's effects on the quality of the human environment likely to be highly controversial?

No. The proposed action would not result in construction or ground disturbance and would comply with safety standards for human exposure to RF emission. The WSR-88D can cause harmful electromagnetic interference (EMI) with charge-couple devices (CCDs) which electronically record data collected by astronomical telescopes. The potential for harmful EMI would arise if the WSR-88D's main beam would directly impinge on an astronomical observatory during low angle scanning. NWS identified three astronomical observatories within 150 miles of the WSR-88D and analyzed the potential for a lower scan angle to result in the main beam impinging on each observatory. No observatories would be affected at the proposed 0.0 deg scan angle.

5. Are the proposed action's effects on the human environment likely to be highly uncertain or involve unique or unknown risks?

No. The proposed action would not increase the radar's power output, but would spread those emissions over a larger portion of the atmosphere. RF power densities at the newly covered area would be the same as at existing covered portions of the atmosphere. The EA contains detailed calculations of RF exposure levels and compares projected exposure levels to safety standards for RF exposure of the general public and workers, potentially RF sensitive activities (e.g. fuel handling, use or transport of electro-explosive devices), and active implantable medical devices. The proposed action would comply with all safety standards. The WSR-88D main beam would also not directly illuminate any astronomical observatories and would not have the potential to affect their operation. There is very little potential for unknown or uncertain impacts to result.

6. Can the proposed action reasonably be expected to establish a precedent for future actions with significant effects or represent a decision in principle about a future consideration?

No. The proposed action is limited to lowering the minimum scan angle of the existing KMTX WSR-88D serving the Salt Lake City, UT, area, and the EA analysis is specific to that radar. If the NWS were to consider lowering the minimum scan angle of another WSR-88D in the nationwide network, they will perform a site specific analysis of potential effects for that radar in compliance with NEPA and NAO 216-6A. No precedents would result for future actions with significant effects or a decision in principle about a future consideration.

7. Is the proposed action related to other actions that when considered together will have individually insignificant but cumulatively significant impacts?

No. The Final EA report evaluates the potential for the proposed action, in conjunction with past, present, and reasonably foreseeable future actions to cause significant environmental effects. The proposed action is not reliant upon or connected to other actions, nor is it relied upon for the occurrence of other actions. Therefore, the proposed action will not result in a significant cumulative impact to the human environment.

8. Can the proposed action reasonably be expected to adversely affect districts, sites, highways, structures, or objects listed in or eligible for listing in the National Register of Historic Places or may cause loss or destruction of significant scientific, cultural, or historical resources?

No. As discussed in the answers to questions 3 and 4, no historic places occur with the proposed action's APE and no electromagnetic effects would result to astronomical observatories.

9. Can the proposed action reasonably be expected to have a significant impact on endangered or threatened species, or their critical habitat as defined under the Endangered Species Act of 1973?

No. Based on information obtained from the U.S. Fish and Wildlife Service, The only species listed or proposed for listing under the Endangered Species Act that could potentially occur in the general area listed is the yellow-billed cuckoo (*Cocceyzus americanus*), which is listed as threatened. Critical habitat for this species has been designated, but the WSR-88D is not located within critical habitat. The yellow-billed cuckoo breeds in willow and cottonwood forest along rivers from Canada to Mexico and has declined in population due to destruction of riverine habitat by dams, agriculture, overgrazing, and growth of exotic plants. Suitable habitat does not occur at or near the WSR-88D and it is unlikely that yellow-billed cuckoos would occur in proximity to the radar. The proposed action would not adversely affect threatened and endangered species or modify critical habitat.

10. Can the proposed action reasonably be expected to threaten a violation of Federal, state, or local law or requirements imposed for environmental protection?

No. The effect of the proposed action on the human environment has been analyzed relative to applicable Federal, state and local environmental laws or regulations. No regulatory violations or other significant environmental effects are expected to result.

11. Can the proposed action reasonably be expected to result in the introduction or spread of a non-indigenous species?

No. The proposed action has no potential to cause the transport, release, propagation or spread of non-indigenous species.

DETERMINATION

After careful and thorough consideration of the Final EA report, the undersigned finds that lowering the minimum scan angle of the KMTX WSR-88D serving the Salt Lake City, UT, area from the current +0.5 deg to 0.0 deg is consistent with existing national environmental policies and objectives set forth in sections 101(a) and 101(b) of NEPA and will not significantly affect the quality of the human environment or otherwise result in any condition requiring consultation pursuant to section 102(2) (c) of NEPA.

As described in section 5.03c of NOA 216-6A, a Finding of No Significant Impact is supported and appropriate for lowering the minimum scan angle of the KMTX WSR-88D from the current +0.5 deg to 0.0 deg. as analyzed in the EA report. Preparation of an environmental impact statement for this action is not necessary.

//signed 9/10/18//	
Jessica Schultz	Date
Radar Focal Point	
Radar Operations Center	
National Weather Service	