Improvements to ground clutter mitigation for polarimetric Doppler weather radars

David Warde and Sebastián Torres

CIMMS/The University of Oklahoma and National Severe Storms Laboratory/NOAA

NEXRAD Technical Advisory Committee

Norman, OK
4 November, 2015
What does Ground Clutter do?
- Obscures/biases meteorological-variable estimates

What does Ground Clutter look like?
- Reflectivity: wide range of values
- Doppler Velocity: near zero
- Spectrum Width: very narrow (< 0.5 m/s)

What can we do about Ground Clutter?
- Filter to mitigate obscuration/bias
- Misapplication of the filter affects data quality
 - Ground Clutter Filter may remove some weather signal
 - Challenge: zero-isodop weather (similar characteristics as ground clutter)
 - Tapered data window unnecessarily applied
snowing in Duluth, MN
snowing in Duluth, MN

WSR-88D
Forced Filtering
~50 km
simple radar return classification

- Ground Clutter
- Weather
- Mix Ground Clutter/Weather
- Clutter Dominates
- Weather Dominates
- No Weather/No Ground Clutter
can we tell where weather is?

- Dual polarization variables should help
 - **DP variables don’t discriminate well**
 - **spatial variability of DP variables do**

Best Discriminator: spatial standard deviation of ϕ_{DP}

(source: Rico-Ramirez, 2008, IEEE TGRS)
identifying dominant weather

• Weather returns exhibit smooth ϕ_{DP} in range
 – Variability of ϕ_{DP}: $\Delta \phi_{DP}(n) = \phi_{DP}(n+1) - \phi_{DP}(n)$
 • n indexes range gates
 – Measured variability is due to spatial variability and statistical uncertainty (variance)
 • $(\Delta \phi_{DP})^2 = \sigma_{spatial}^2(\phi_{DP}) + \sigma_{estimate}^2(\phi_{DP})$
 – Spatial variability can be assessed by removing expected statistical uncertainty
 • Melnikov (2004) computed theoretical variance expression

• Dominant weather is identified as
 – Low spatial variability
 • Threshold on $\Delta \phi_{DP}$ based on look-up table
 – SNR > 20 dB and $\rho_{hv} \geq 0.99$
WET and **CLEAN-AP** work together to provide an improved ground clutter mitigation solution.
snow again, Duluth, MN (v)

WET/CLEAN-AP
snow again, Duluth, MN (ϕ_{DP})
snow again, Duluth, MN (Z_{DR})

WET/CLEAN-AP
snow again, Duluth, MN (ρ_{hv})

WET/CLEAN-AP
ground clutter mitigation

- **CLEAN-AP**
- **Weather Environment Threshold (WET)**
- **No Weather/No Ground Clutter**

Mix Ground Clutter/Weather
Back Up Slides Analysis
Test Cases, Unfiltered Range Bins
clutter affects DP variables more!

• Friedrich et al., JTECH, 26, 2009
 – Combine
 • Real weather level-I (I&Q voltages)
 • Ground Clutter level-I (I&Q voltages)
 • Using different mixing ratios

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Error of Estimate</th>
<th>CSR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_n</td>
<td>1.7 dB</td>
<td>-1</td>
</tr>
<tr>
<td>Φ_{DP}</td>
<td>3°</td>
<td>-6</td>
</tr>
<tr>
<td>Z_{DR}</td>
<td>0.2 dB</td>
<td>-9</td>
</tr>
<tr>
<td>ρ_{hv}</td>
<td>0.02</td>
<td>-13</td>
</tr>
</tbody>
</table>