HAIL HAZARD LAYERS

Decision Briefing

David J. Smalley

NEXRAD TAC

29 August 2012

LINCOLN LABORATORY
Massachusetts Institute of Technology
Outline

• Hail Hazard Layers Algorithm – Motivation
• Hail Hazard Layers Algorithm – Details
• Sample Performance
• Challenges
• Summary
Motivation for Hail Hazard Layers

“My husband and I were on the Frontier flight. We were told it was hit by lightning twice, along with the wind and hail. The pilot told us the wind screen was cracked and that we wouldn't be able to reach the normal altitude of over 30,000 ft. We were flying at 22,000 ft. We didn't have enough fuel to reach Denver so we landed in Kansas City. It was quite scary. We were also told by the flight attendants that there were 2 flights in front of us that didn't hit any bad weather. Other people on flight said there was a hole in one of the wings.”

- Mary

Frontier Airlines encounters hail hazard on ascent out of Little Rock (Feb. 2012)
Motivation for Hail Hazard Layers (cont.)

• HHL Addresses
 – Dual pol hail detection benefit
 – Unexpected hail aloft
 – Identify early hail potential (indicator of future cell intensity)
 – Microburst precursor

• Supplement use of current NEXRAD hail algorithm by FAA weather systems
 – Provide vertical extent of hazard
 – ITWS operational use
 – WARP receives product

Heinselman and Ryzhkov (2006) show hail class algorithm with CSI of 89% vs. 56% for traditional algorithm

Hail can be displaced from the updraft core particularly for LP (low precipitation) supercells
Outline

• Hail Hazard Layers Algorithm – Motivation

• Hail Hazard Layers Algorithm – Details

• Sample Performance

• Challenges

• Summary
Use HCA Rain/Hail Classification to Derive HHL Altitude Top and Bottom from Tilts

Note graupel class (pink) surrounds and caps rain/hail class (red) above freezing level

HCA = NEXRAD Hydrometeor Classification Algorithm
NEXRAD Hail Hazard Layers
Product Description

<table>
<thead>
<tr>
<th>Range Coverage</th>
<th>300 km (dual pol range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azimuthal Coverage</td>
<td>360 degrees</td>
</tr>
<tr>
<td>Range Gate Resolution</td>
<td>1 km</td>
</tr>
<tr>
<td>Azimuth Resolution</td>
<td>1 degree</td>
</tr>
<tr>
<td>Volume Product Output</td>
<td>Altitude (in kft)</td>
</tr>
<tr>
<td></td>
<td>Severity* (up to 5 levels)</td>
</tr>
<tr>
<td></td>
<td>Confidence* (up to 10 levels)</td>
</tr>
<tr>
<td></td>
<td>* - future version</td>
</tr>
</tbody>
</table>

Conceptual Approach to Derive Vertical Extent of Hail

Spotter Verification
Future Severity based on Hail Sizing

- NEXRAD HCA rain/hail class is the basis for sizing of large hail
- NSSL method for large hail (> 2.5 cm dia.) uses Z, ZDR, ρ_{hv}, and height from melting layer
- Sizing logic will be a sidebar to NEXRAD HCA
- Small and giant hail sizing targeted for future
Outline

• Hail Hazard Layers Algorithm – Motivation

• Hail Hazard Layers Algorithm – Details

• Sample Performance

• Challenges

• Summary
Hail Hazard Layers (HHL) Algorithm

- **NEXRAD HHL performance evaluation and tuning**
 - Product based on rain/hail class from HCA
 - Currently running 24/7 at 34 sites
 - Cross checked against hail reports
 - National Weather Service Storm Data
 - Community Collaborative Rain, Hail, and Snow network (CoCoRaHS)

Note graupel class (pink) surrounds and caps rain/hail class (red) above freezing level

Validation of hail
KLOT March 30, 2012
1358 UTC

HCA = NEXRAD Hydrometeor Classification Algorithm
HHL Comparison to Legacy Hail

Hydrometeor Classification for mid-level scan of radar volume (red indicates rain/hail class)

HHL volume product depicting top altitude of hail found in radar volume by azimuth and range

Triangles are storm cells with hail likely from the legacy Hail algorithm. Large triangles represent greater hail likelihood. Filled triangles represent greater severe hail likelihood.
The Great St. Louis Metropolitan Hail Storms
April 28th 2012

Typical results observed between HHL and Legacy Hail for widespread events
From the Storm – NWS Survey, Reports, Samples
Spotter and CoCoRaHS typical results . . .

Have not observed spotter reports absent of HHL indication (50+ events)

White ovals represent trained storm spotter hail reports for hail between 0.25 – 0.75 inch diameter
Typical results
Spotter reports = ground verification
Complete melting before surface makes “aloft only” verification difficult
KDDC HHL 08/24/2012 2054 UTC
with Spotter Reports, Legacy Hail

- Typical results
- Spotter, HHL, and Legacy Hail agree for two cells
Outline

• Hail Hazard Layers Algorithm – Motivation

• Hail Hazard Layers Algorithm – Details

• Sample Performance

• Challenges

• Summary
Overarching Dual Pol Data Quality Issues

- The overall quality of the dual pol parameters impacts all downstream algorithms
 - ZDR calibration critical
 - Initial calibration
 - Recalibration
 - Magnitude
 - Stability
 - Monitoring
- Relative calibration between radars for ZDR
- NEXRAD dual pol algorithms might need to account for the “state of the radar”

ZDR = Differential Reflectivity
HCA Sensitive to “State of the Radar”

- Accurate ZDR is paramount at certain magnitudes for HCA
- Agile, high fidelity melting layer determination
- Robustness of rain/hail class (and all classes) needs further understanding
 - overall network
 - regional/seasonal
 - physically

Small variations in ZDR result in large impacts to HCA
Liquid classes restricted above melting layer

ZDR = Differential Reflectivity; HCA = NEXRAD Hydrometeor Classification Algorithm
Outline

• Hail Hazard Layers Algorithm – Motivation
• Hail Hazard Layers Algorithm – Details
• Sample Performance
• Challenges

• Summary
Development Path of HHL Algorithm

- Continue to monitor HHL
 - Robustness of HCA’s rain/hail class
 - When is it not hail?
 - Evolution of dual pol NEXRAD

- Next: Test/Implement hail sizing (severity)
 - Initial NSSL version: large (> 1” dia.)
 - Future NSSL version: up to 4 sizes

- Further development
 - Hail transition/melting concepts
 - Relationship with microburst evolution
 - Evolution of rain/hail class
Summary

• Legacy hail algorithm does not take advantage of dual pol capability

• HHL is based on the dual pol rain/hail classification and introduces the concept of vertical location/extent

• Logical results consistently observed between HHL and ground reports of hail

• Request a decision from the NEXRAD TAC