

Dual-Polarization (DP) Evaluation

Robert Lee
Radar Operations Center
Applications Branch
Norman, Oklahoma

Overview

- Summary since last TAC
- Issues Resolved
- Improved Capability
- Remaining Challenges

- December 2009
 - Sensitivity difference between KOUN and KCRI
 - Between 6 and 8 dB
 - Examples shown
 - Calibration differences
 - Examples shown
 - SME Panel #1: Would DP sensitivity loss affect operations?
 - Up to 4 dB sensitivity loss ok, otherwise operational assessment needed.
- January 2010
 - Contractor redesigned receiver
 - Improved dynamic range and sensitivity
- March 2010
 - SME Panel #2
 - · confirmed results of first panel
 - saw great potential for use of DP in operations

- March 2010 ENG
 - 5.0 to 5.5 dB Sensitivity Difference between KOUN and KCRI
 - 1.5 dB sensitivity loss due to frequency differences
 KOUN = 2.7 GHz
 KCRI = 2.95 GHz
 - 3.5 4 dB sensitivity loss due to DP H/W http://ams.confex.com/ams/91Annual/webprogram/ Manuscript/Paper183654/Sensitivity_Operational_ Wx_Radars_Ice_27thIIPS_Jan2011_compact.pdf
 - The expected sensitivity loss for any given radar due to DP H/W will be 3.5 – 4 dB

- May 2010
 - Eng Signal processing assessment
 - Calibration differences resolved on KOUN and KCRI by ROC Eng and El techs
 - ZDR not fully calibrated but good base data was available to begin algorithm evaluation
- June August 2010
 - High ZDR values resolved example shown
 - Fingerprint artifact resolved example shown
 - 12 DP precipitation algorithm cases evaluated
 - Software bugs identified and fixed
 - 4 Algorithm science issues resolved, 4 issues remain
 - ZDR calibration not accurate enough for QPE use

- August 2010
 - Operational Assessment –will be briefed later
- May 2010 December 2010
 - Improved capability
 - DP variables and algorithms examples shown
 - Continued visual and statistical evaluation
 - ZDR calibration was too high before December 2010 and too low after

- January 2011
 - Hardware and software fixes to KOUN
- January February 2011
 - Current Status
 - 4 algorithm science issues to be investigated and tested
 - ZDR calibration stable but 0.5 dB too low
 - Subjective human ZDR evaluation examples shown
 - ZDR useful for forecaster visual interpretation but not good enough for DP QPE algorithm use

Issues Resolved

Initially, Sensitivity/Calibration Not Good

- Initial KOUN / KCRI sensitivity and calibration issues
- 2325 UTC Sep. 22, 2009
- KOUN: VCP 21
- KCRI: VCP 221
- Heavy precip SE, clear air bloom, strong cold front
- ROC El techs fixed calibration issues on KOUN and KCRI
- ROC ENG eventually sorted out the sensitivity issue.

Resolved: Sensitivity/ Reflectivity Calibration Differences Between KOUN and KCRI

SNR/dBZ differences for NOP4 on 07/03/2010 at 06:29:25.69 VCP: 121, El: 0.527, Ru: 471 and for KOUN on 07/03/2010 at 06:29:19.84 VCP: 121, El: 0.533, Ru: 460

Resolved: Very high ZDR in clear air returns

- Began on 6/29/10
- Persistent in all clear air returns since
- Does not seem to affect Zdr in weather
- Seen in all VCPs
- L-3/Baron investigated and resolved a scaling issue to properly cap ZDR values

Resolved: Fingerprint

- 15 June 2010, 0700Z
- Present in ZDR and PHI
- Faulty LNA was the problem

Resolved DP Algorithm Science Issues

- Changes Submitted (Mark Fresch will cover in more detail)
 - DP QPE R(Z,ZDR) underestimates tropical rain
 - DP QPE rates much different for very small blockage compared to no blockage
 - Quick fix for attenuation/non-uniform beam filling: being tested
 - ROC Apps drafted AEL changes; ROC SW Eng implemented, additional testing under way
 - SMOOTHING BY THE DUAL POL PREPROCESSOR

Dual-Pol Improved Capability Examples

- DP Variables
- DP Algorithms
 - precipitation accumulation
 - melting layer
 - hydrometeor classification

7/4/2010 KOUN: Improved Capability

- 2207 UTC
- VCP 121
- Bypass Map Clutter Filtering
- Linear convection
 - Heavy rain
 - Scarce lightning
 - Strong winds
 - Norman's fireworks canceled

May 10, 2010 KOUN: Improved Capability

- 5/10/2010 2159 UTC
- Tornado outbreak
- Grapefruit hail
- Second best updraft ever seen by Les Lemon & Paul Schlatter

Tornado Debris Balls: Improved Capability

- May 10th 2229 UTC
- Low CC and Low ZDR values within tornado debris balls (white circles)

DP Variables Differentiate Scatterers: Improved Capability

DP Algorithms Improved Capability

- Good base data for algorithm evaluation not provided until mid-May 2010
- 12 cases initially evaluated
 - Several issues identified with the Preprocessor, HCA, QPE, and ZDR calibration
 - Since then, OHD and ROC have been working with NSSL to refine the algorithms
- Even without all the issues fixed, there is evidence that DP QPE outperforms the PPS in the following situations:
 - removing non-precipitation echoes
 - mitigating hail contamination
 - Identifying the bright band.

Remaining Issues

- Algorithm Refinement Issues
- ZDR Evaluation

Remaining DP Algorithm Science Issues

- Mark Fresch will cover in more detail
 - QPE won't work properly without ZDR calibrated to 0.1 dB
 - Biota Misclassified as Big Drops
 - Accumulation Discontinuity at Melting Layer
 - HCA mis-classifies non-precipitating echoes in some cases

Remaining ZDR Calibration Issue

- Subjective human analysis ZDR evaluation
- 9/23/10: 0012 UTC
- VCP 21
- Bypass map clutter filtering
- Light stratiform rain across much of Oklahoma. Essentially the poster child for being able to check for ZDR bias

Remaining ZDR Calibration Issue

- Subjective human analysis ZDR evaluation
 - -2/1/11
 - 0400 UTC
 - VCP 21
 - -2/4/11
 - 1535 UTC
 - VCP 21
 - Bypass Map Clutter Filtering
 - Stratiform snow events

KOUN 0400Z VCP 21 01Feb11

ZDR

CC

KOUN 0400Z VCP 21 01Feb11

ZDR Evaluation Summary

- 9/23/10 Light Stratiform Rain
 - 3 experts examined the data independently and came up with "0.7 to 0.8 dB too high" for bias
- Hardware and software fixes occurred in January 2011
- February 2011Snow Storms
 - All events showed ZDR too low by ~0.5 dBz.

Summary

- Dual-Pol Improved Capability
 - Forecasters can use new DP variables to provide enhanced information and new capabilities
- Resolved Issues
 - System sensitivity, reflectivity calibration, DP base variable computation and display, and algorithm software bugs and refinement issues
- Remaining Issues
 - Algorithm refinement
 - ZDR calibration not sufficient for QPE algorithm to properly provide enhanced performance over Legacy algorithms

Questions?

