CMD Deployment TAC Meeting, November 2009 Rich Ice

- Review Implementation Design for Build 11.0
- Summarize Beta Test Results
 - Missed Detections
 - Resulting Build 11.1 Changes
- Build 11.1 Deployment
- On-going Field Performance Monitoring
 - CMD Performing Well in Most Cases
 - False Detections Associated with Low Mean Velocity Returns
 - Performance Examples
- Future Work

CMD Algorithm - NCAR

- Algorithm Feature and Fuzzy Logic Interest Fields
 - Clutter Phase Alignment (CPA)
 - Reflectivity Texture (single radial, 9 gates)
 - SPIN (single radial change of sign of texture gradient 11 gates)
- Includes Data Quality Functions
 - Signal to Noise Ratio Threshold (currently 0 dB)
 - Fill in Filter (recommended 3 gates maximum)
 - Median Filter (recommended 3 gates for smoothing CPA)
- For algorithm design and performance details:
 - Hubbert, J. C., M. Dixon, S. M. Ellis and G. Meymaris, 2009a, Weather radar ground clutter. Part 1: identification, modeling, and simulation. J. Atmos. Oceanic Technol., 26, 1165-1180.
 - Hubbert, J. C., M. Dixon, S. M. Ellis and G. Meymaris, 2009b, Weather radar ground clutter. Part 2: Real-time identification and filtering, J. Atmos. Oceanic Technol., 26, 1181-1197.

Adding I and Q for a gate in a phasor diagram

A Few Details

CMD Implementation Design Features

- CMD Clutter Flags generated in RVP8
 - first Surveillance cut of each split cut segment (lower 2 of 5)
 - Super resolution: 0.5 degrees by 0.25 km
- CMD Parameters set by special configuration file
- Bypass Map to be same as baseline (1 deg by 1 km resolution)
- Surveillance Reflectivity filtered bins selected in near real time
 - Initially done on 0.5 degree by 1 km basis
 - Build 11.1 changed to Bypass Map application (more later)
- Doppler data filtered by normal application of bypass map
- Operator control CMD enable/disable can add zones
- Bypass map for each segment sent to RPG and in Level 2 data
 - Updated each volume
 - Associated with previous volume scan
- CMD Status indicator on HCI and in GSM

Beta Tests – Spring – Summer 2009

- Build 11.0 Beta Test March 31 May 14, 2009
 - Sites: Dodge City, Columbus AFB, Yuma, Tucson, South Kuai, Albuquerque, Sacramento
- Issue with missed detections seen initially at Tucson (KEMX)
 - Addressed in Build 11.1 Release with bypass map change
- Build 11.1 Beta Test June 16 July 21, 2009
 - Sites: Tucson, Albuquerque, Dodge City, Phoenix, Sacramento, Yuma
- Build 11.1 Deployment: July 27, 2009

Sile: KEMK VST: 04/20/2009 12:08:44 UTC Prod: 04/20/2009 12:08:41 UTC VCP: 32 Ta: 0.472*	
Select Sweep G Base Bellectivity C Base Velocity C Sjom Relative C Spectrum Width	
Select Tit 05' 05' 15' 15' 25' 35' 45'	
Warnings F Frank Fland Ø Sowne Thandentom Ø Tananto	
다 Smoothing 다 Deallas	

KEMX "Hot Spots" Surveillance Reflectivity

KEMX Doppler Reflectivity

Build 11.0 Design (Super Resolution):

CMD Flags: 0.5 by 0.25 km

Surveillance Filtering: 0.5 by 1 km

Doppler Filtering: "Grown" Bypass Map

Build 11.1 Design (Super Resolution):

CMD Flags: 0.5 by 0.25 km

Surveillance Filtering: Bypass Map

Doppler Filtering: Bypass Map

Good Results with Build 11.1

Deployment Monitoring

- CMD Active over most of the network
- Some ROC Hotline Calls
 - Some not CMD related
 - Several related to false detections in zero mean velocity regions
- CMD reveals AP clutter can change greatly over short time periods
- Examples follow

NEXRAD LEVEL-III CLUTTER FILTER KILX - LINCOLN, IL 09/16/2009 05:51:44 GMT LAT: 40/08/59 N LON: 89/20/13 W ELEV: 730 FT

ELEV SEG. 1 BYP.: 09/16/2009 05:51:00 C.F.M: 09/16/2009 05:55:00

Legend: dBZ (Category)

MODE/VCP: A / 12

	Site: KIL	X 16/2004	9 DA-30-	11.11TC	
	Prod: 09/16/2009 04:30:08 UTC VCP: 12				
to to	Til: 0.476*				
1 40 40	Select Sweep:				
	Base Beflectivity				
R. Sie	C Base Velocity				
Also.	C Sterre Relative				
100.00	Storm Helative				
	Spectrum Width				
State of	Select T	it:			
A Charge	0.5*	0.5*	0.9*	0.9*	
	1.3*	1.3*	1.8*	2.4*	
the state of the	0.44	100	-	0.40	
a stand	3.1	4.0	3.1	0.4	
AR	8.0*	10.0*	12.5*	15.6*	
dires ?	19.5*				
da Circ					
Sheet 1	Warning	Warnings:			
10.00	Flash Flood - 0				
C. C. LLA	Thunderstorm - 0				
\mathcal{L}	Tomado - 0				
1 m	_				
- X	I Smoothing				
	Dealias				
1 ist					
10					
1.00					
The Lat					
ap Aller					

KILX 9/16/2009 Widespread AP

KCRI 6/23/2009 12:43Z

Widespread AP

KCRI 6/23/2009 12:49Z

AP Gone?

KBLX 8/5/2009 Reflectivity

Reflectivity (dBz) Cut 1, 08/05/2009 00:31:01.91 KBLX

KBLX 8/5/2009 Velocity

Velocity (m/s) Cut 2, 08/05/2009 00:31:19.64 KBLX

KFSD Sioux Falls SD August 12, 2009 Reflectivity 155505Z

Reflectivity 155505Z

Google maps Address

Wind Turbines! Did CMD detect?

Ruthton, Minnesota

Reflectivity (dBz) Cut 1, 08/12/2009 11:06:09.34 KFSD

Clutter Map Segment 1, 08/12/2009, 11:06:00.00

Engineering Investigated Parameter Changes to Reduce False Alarms

KCRI 7/27/2009

SNR 0 MF 3 Gates

SNR 0 MF 5 Gates

SNR 6 MF 3 Gates

SNR 6 MF 5 Gates

Conclusions From Engineering Tests

- Can reduce false detections slightly with longer Median Filter
- Results in Missed Detections
- Increasing SNR merely reduces number of bins CMD runs on
- Current parameters are optimal

9/16/2009 KCRI

SNR 6 MF 5 Gates

An Interesting Case: Topeka Kansas

August 10, 2009

17:42:37

17:51:50

18:00:05

18:09:18

Implementation

Topeka KS 8/10/2009 Frontal Passage Near Radar Later in the Event

20:05:37

Reflectivity (dBz) Cut 1, 08/10/2009 20:14:52.29 KTWX

Topeka KS 8/10/2009 Frontal Passage Near Radar Later in the Event

20:14:52

Topeka KS 8/10/2009 Frontal Passage Near Radar Later in the Event

20:28:41

Clutter Map Segment 1, 08/10/2009, 20:27:00.00

Wrap-Up

- CMD Working well, but could be improved
- Improve CPA Computation for phase varying clutter targets (NCAR)
- Improve In-Fill Filter (NCAR)
- Add Polarimetric Variables (have algorithm description)
- Clutter Filter Performance Improvements:
 - Adaptive windowing
 - Narrow expected clutter spectrum width (GMAP seed value)
 - Reduce aggressiveness of clutter residue censoring
- Look at alternative filtering methods

Future Work: NCAR's Improved CPA Calculation

- Divide the time series into 8 parts.
- Compute the CPA factors for each part.
- Compute CPA using some fraction of the parts which yield a maximum value.
- The leads to higher values of CPA and a generally smoother result.
- The membership function for CPA must be adjusted to account for the higher values.

The existing CMD flag in-fill filter

 The filter 'fills in' gates for which the flag is not set, if there are flagged gates on either side.

- The filter is designed to fill in gaps of the type shown above.
- Specifically, it will fill in the gaps of the following type:
 - 1 un-flagged gate between adjacent flagged gates
 - 2 un-flagged gates with at least 2 flagged gates on either side
 - 3 un-flagged gates with at least 3 flagged gates on either side

Proposed new CMD flag in-fill filter

 One each side of the gate in question, construct a computational kernel with weights decreasing with distance from the gate.

• In the forward direction, sum up the weights for gates which have the flag set (e.g. marked * = 1/2 + 1/5 + 1/6 = 0.76)

• In the reverse direction, sum up the weights for gates which have the flag set (e.g. marked $* = \frac{1}{2} + \frac{1}{4} = 0.75$)

 IF forward_weight >= 0.7 AND reverse_weight >= 0.7 THEN set CMD_flag at center gate to TRUE

NCAR's Improved In-Fill Filter

64

nonedeq

