Performance Analysis (Informational Brief)

Clutter Environment Analysis Using Adaptive Processing (CLEAN-AP)

David Warde and Sebastian Torres
CIMMS/University of Oklahoma
And NSSL/NOAA
OUTLINE

- Simulation results
 - Clutter Detection
 - Clutter Filtering
- Real data analyses and comparisons
 - KEMX (Can you see the mountains?)
 - KABX (Are the mountains still there?)
 - KCRI (What happened to the zero-isodop?)
 - KTLX (Where is the zero?)
- Summary and recommendation
Clutter Detection Performance
(SNR 20 dB, SW 4 m/s, Nyquist 26.6 m/s)
Clutter Detection Performance
(SNR 20 dB, SW 4 m/s, Nyquist 11.7 m/s)
Clutter Filtering

Clear Air Reflectivity Bias

WSR-88D data from Ice et al. 2004
Clutter Filtering
Surveillance Reflectivity Bias

WSR-88D data from Ice et al. 2004
Clutter Filtering
Doppler Reflectivity Bias

WSR-88D data from Ice et al. 2004
Clutter Filtering Suppression Comparison

GMAP

CLEAN-AP
Clutter Filtering Velocity Bias Comparison

GMAP

CLEAN-AP
Clutter Filtering Spectrum Width Bias Comparison

GMAP

CLEAN-AP
RDA Build 11.0 Beta Test (CMD implemented)

- Missed CMD detections in RDA Build 11.0
 - Level-I data indicated that, at times, two distinct targets were captured by the moving antenna
 - Phase and power changes between clutter targets caused low CPA values
- Mitigated CMD missed detections in RDA Build 11.1
Mountainous Terrain
And
Low Level Clutter

KEMX

Mountainous terrain above Catalina Foothills

WSR-88D Located Southeast of Vail, AZ
Mountainous terrain above Catalina Foothills
KEMX
Build 11.0
Hot Spots in Mountainous Terrain
And
Low Level Clutter

Data provided by ROC : Jane Krause
KEMX
Build 11.1
Hot Spots in Mountainous Terrain
And
Low Level Clutter

Data provided by ROC: Jane Krause
KEMX
CLEAN-AP
Hot Spots in Mountainous Terrain
And
Low Level Clutter
KEMX
Clutter Suppression

CMD & GMAP Build 11.1

Missed Detections
Censored to ~53 dB

CLEAN-AP

Detected
60 dB

Data provided by ROC : Jane Krause
KABX
Albuquerque, NM
Are the mountains still there?

Terrain

Unfiltered
KABX
Albuquerque, NM

CMD & GMAP Build 11.1

CLEAN-AP

November 16, 2009
KCRI (ROC Testbed) Norman, OK

What happened to the zero-isodop?

- Zero-isodop loss
 - Weather with narrow spectrum width and near zero velocity has nearly the same spectrum as clutter
KCRI (ROC Testbed) Reflectivity

Unfiltered

CLEAN-AP
KCRI (ROC Testbed) Velocity

Unfiltered

CLEAN-AP
KTLX
Oklahoma City, OK
Where is the zero?

- Snow event with imbedded storms
KTLX Reflectivity

Unfiltered

CLEAN-AP

KTLX (OKC, OK) 0434Z 27OCT2006
Reflectivity - Unfiltered

KTLX (OKC, OK) 0434Z 27OCT2006
Reflectivity - CLEAN-AP

No detectable zero-isodop loss!
KTLX
Spectrum Width

Unfiltered CLEAN-AP

PPP Processing Cross-Spectral Processing
Summary

- CLEAN-AP
 - Performance exceeds NEXRAD standards
 - Clutter Detection is comparable to CMD
 - Better performance in mountainous environments
 - Better performance in low clutter environments
 - Clutter Suppression exceeds GMAP
 - Better Data Quality
Recommendation

- CLEAN-AP is a **real-time, automatic, integrated** approach for ground clutter **detection and filtering** that produces data with the **best possible quality** while meeting NEXRAD technical **requirements**
 - Improved performance compared to current approach
- We recommend considering the CLEAN-AP filter as a ground clutter mitigation solution for the NEXRAD network
 - TAC endorsement is needed
BACK UP SLIDES
Detection and Filtering Requirements

- NEXRAD Technical Specifications
 - Detection
 - ROC tentative (DQ Subcommittee: System Specifications; Chair: Rich Ice)
 - SP: $\geq 50\%$ @ -10 dB, $\geq 90\%$ @ -5 dB, and 100% @ 5 dB
 - DP: $\geq 50\%$ @ -15 dB, $\geq 90\%$ @ -5 dB, and 100% @ 5 dB
 - May need lower bound - $\leq 5\%$ @ -30 dB
 - Clutter Mitigation Decision (CMD) System - NCAR
 - Filtering
 - WSR-88D System Specification
 - Clutter Suppression
 - Reflectivity – at least 30 dB
 - Doppler – Range of usable velocities for 20 dB (± 2 m/s), 29 dB (± 3 m/s), and (± 4 m/s) 50 dB
 - Gaussian Model Adaptive Processing (GMAP™) filter – Vaisala
KCRI (ROC Testbed) Spectrum Width

Unfiltered

CLEAN-AP
Adaptive Windowing

![Graph showing CLEAN-AP Window Selection with different window types: Blackman-Nuttall, Blackman, Von Hann, Hamming, Rectangular. The x-axis represents CSR (dB) and the y-axis represents window selection.](image)
Phase Bias

Magnitude (SNR = 20 dB, \(v = 0 \) m/s)

Phase

\(\sigma_v = 4 \)
\(\sigma_v = 0.3 \)

Phase Bias
Reflectivity
PAR

Unfiltered

CLEAN-AP
Velocity PAR

Unfiltered

CLEAN-AP
Spectrum Width
PAR

Unfiltered

CLEAN-AP
GMAP vs CLEAN-AP
Notch Width

Notch Width Selection

Normalized Notch Width (Coeff/Max(Coeff))

CSR (dB)
Clutter Filtering Velocity Bias Comparison

GMAP

CLEAN-AP
Clutter Filtering Velocity Bias Comparison

GMAP

CLEAN-AP
Clutter Suppression Sample Size Analysis

CLEAN-AP Clutter Suppression Capability

![Graph showing CLEAN-AP Clutter Suppression Capability with CSR (dB) on the x-axis and different curves representing various sample sizes.]