Calibrating differential reflectivity on the WSR-88D

Dusan S. Zrnic, Valery M. Melnikov, John K. Carter, and Igor Ivic
Content

• Effects of Z_{DR} bias
 – On rainfall measurements
 – On classification of hydrometeors

• Calibration Procedure
 – Version I: Accounting for all links in the transmitter and receiver paths
 – Version II: Ignoring part of the transmitter path (waveguides to outside of radome)
Effects of bias on Rainfall Measurements

RMS error of Best R(Z) = 0.35%

Bias=0.28%
Effects of Bias on Rainfall Measurements

• If the bias in Z_{DR} is 0.2 dB
 – the polarimetric rainfall relation $R(Z, Z_{DR})$ used at moderate rainfall rates (6 to 50 mm h$^{-1}$) are at least as good (rms errors = 35%) as the $R(Z)$ relation
 – at most values of Z_{DR} the rms errors are smaller

• If the bias in Z_{DR} is 0.1 dB
 – the rms errors in the polarimetric rainfall estimates are smaller than 20%
Effects of Bias on Classification

- Width of the transition region = 0.1 dB
- Bias=0.1 dB
- Bias=-0.1 dB
- "Cold" snow (-5°C)
- "Warm" snow (~0°C)
Effects of Bias on Classification

Width of transition region, no bias

Width of transition region, bias=0.1 dB

$W_i(Z_{DR})$
Calibration Needs for the WSR-88D Network

• Calibration at time of retrofit – therefore:
 – Meteorological scatterers – OUT
 – Ground scatterers – POSSIBILITY
 – Sun – POSSIBILITY
 – Instruments - REQUIRED

• Maintain calibration all the time – therefore:
 – Automatic procedure at end of each volume scan - REQUIRED

• Least disturb the system
Calibration Points for Z_{DR} measurements all paths included
Procedure

1) Separate bias in the time invariant part Δ_C and the variable part $\Delta_{34}(P_h)$ so

$$\text{Bias} = \Delta_C + \Delta_{34}$$

$$\Delta_C = \Delta_{12} + 2\Delta_{S2} + \Delta_{23}$$

2) Obtain Δ_{12} directly – monitor transmitter power and measure powers at output of EI rotary joints.

3) To measure bias of the receiver chain use only the output of the digital receiver.
Variable Bias $\Delta_{34}(P_h)$, LNA to Dig Rec – Internal Signal Generator

Internal CW generator at input to the LNAs, 3/17/2005 UT:17:31

Graph showing the relationship between Δ_{34} and power $10\log_{10}(P_h)$ (Internal RVP8 units) with different lines representing Δ_{34} (with noise), Δ_{34} (noise corrected), and $\text{SNR}_n = 0 \text{ dB}$. The graph includes an extrapolation feature.
Variable Bias $\Delta_{34}(N_g)$ obtained with the Internal Noise Generator

$\Delta_{34}(\text{with noise})$

$\Delta_{34}(\text{noise corrected})$

$\text{SNR}_h = 0 \text{ dB}$

$\text{SNR}_h = 0 \text{ dB}$
Bias from EL joints to Dig Rec
External Generator above EL Joints

External HP Generator above the El Rotary Joints, 3/10/2005 UT:16:41

- Δ_{24} (with noise)
- Δ_{24} (noise corrected)
- $\text{SNR}_n = 0 \, \text{dB}$

Power, $10\log_{10}(P_h)$ (Internal RVP8 units)
Sun scan: P_h and P_v, and bias component ΔS_4
Constant Receiver Bias (Sun to LNA) over a five month period

Mean = -0.3 dB
SD = 0.028 dB
Bias between LNA and Dig Rec (variations over two 600 min periods)
Error Budget – Estimate

- TR to above El joints,
 - biased: \(\text{rms}(\Delta_{12}) < 0.04 \text{ dB} \)?

- EL joints to out of radome,
 - biased: \(\text{rms}(\Delta_{2S}) < 0.03 \text{ dB} \)?

- Sun to LNA
 - Difficult not biased: \(\text{rms}(\Delta_{S3}) < 0.03 \text{ dB} \)

- LNA to Dig Receiver,
 - Difficult not biased: \(\text{rms}(\Delta_{34}) < 0.04 \text{ dB} \)

Total SD value < 0.1 dB
Calibration of ZDR on the WSR-88D
Version I: PROCEDURE

• The procedure uses existing components on the WSR-88D and the Sun
• The bias consists of a constant part and a time varying part
• The constant bias is obtained from three sets of measurements (one in the transmission chain two in the receiver)
• The time varying part must be measured automatically at the end of each volume scan
• Measurement over any part of the active receiver path must be preceded and followed by automated rapid measurement of the active part
Calibration of Z_{DR} on the WSR-88D

Version I: FINDINGS

- The Z_{DR} BIAS is constant over the dynamic range of the receiver
- Coherent leakage caused by the internal frequency generator
 - SOLUTIONS:
 - EXTRAPOLATE THE VALUES FROM HIGH POWERS TO LOW POWERS
 - VERIFY WITH INTERNAL NOISE GENERATOR
- Abrupt discontinuities in bias caused by differential temperature in the LNA enclosures
 - SOLUTIONS:
 - AUTOMATIC CALIBRATION AT END OF VCP
 - FORCE TEMPERATURE CONTROL IN THE TWO ENCLOSURES TO BE THE SAME
- The SUN is an excellent source for calibration
 - IT HAS ZERO BIAS
 - SD OF ERROR CAN BE MADE MUCH SMALLER THAN 0.1 dB
- Achievable rms error should be ~ 0.1 dB
VERSION II: Calibration of Z_{DR} excluding path 2 (EL joints) to SUN

Input – absolute
No Bias $P_h = P_v$

Two channels H and V

Digital Receivers

Output – absolute
Bias and Variance

Transmitter

Power Splitter

TR circuits

El Rot joints

Input – internal Gen
Bias inconsequential

Calibration Ports

Output

S

1

2

3

4
Variable Bias $\Delta_{34}(P_h)$, LNA to Dig Rec – Adjustment using Sun scan

Internal CW generator at input to the LNAs, 3/17/2005 UT:17:31

Power, $10\log_{10}(P_h)$, (Internal RVP8 units)
Repeated Measurements – Transmission Path above EI Joints

• Two power meters, 15 measurements:
 – Mean = -0.057 dB, SD = 0.006 dB

• One power meter, connected and disconnected 10 times
 – Mean = -0.088 dB, SD = 0.004 dB

• Previous measurement: Mean ~ -0.06 dB
Error Budget – Estimate

• TR to above EL joints,
 - biased: \(\text{rms}(\Delta_{12}) < 0.03 \text{ dB?} \)

• EL joints to out of radome,
 - ignore: \(\text{rms}(\Delta_{2s}) < 0.06 \text{ dB?} \)

• Sun to Dig Receiver
 - Easy not biased: \(\text{rms}(\Delta_{3s}) < 0.03 \text{ dB} \)

Total rms value < 0.08 dB
Calibration of ZDR on the WSR-88D Version II: PROCEDURE

• The procedure uses existing components on the WSR-88D and the Sun
• The bias consists of a constant part and a time varying part
• The constant bias is obtained from two sets of measurements - one set has no BIAS
• The time varying part must be measured automatically at the end of each volume scan
• Much easier to make in the field
Calibration of ZDR on the WSR-88D Version II: FINDINGS AND ISSUES

• Sun - equality of the H and V polarizations
 – NCAR’s redundant measurements during quiet (no sun spots) period indicate excellent match

• Sun – standard deviation of measurements
 – NSSL’s result ~ 0.028 dB
 – NCAR’s result ~ 0.024 dB

• Measurement in the transmitter chain
 – Bias at couplers above EL rotary joints
 – Value of ignored bias from the EL joints to outside of radome
Measurement in Drizzle: Z Field

KOUN, Norman, OK. SHV mode
02/06/2005 02:28 UT RHI Az=240.9 deg

Z (dBZ)
Measurement in Drizzle: Z_{DR} Field
Histogram of Z_{DR} in Drizzle

Adjustment using only Sun's Z_{DR}

$\langle Z_{DR} \rangle = 0.01$ dB
Path to Resolution

• NSSL measurement on the RRDA
 – Automatic part of calibration has been implemented, it enables perfect relative tracking of the bias
 – Compare results from the procedure with measurements in precipitation at 60 deg elevation

• NWS to check the precision and bias of the couplers?

• NCAR measurements?
END
Total number=7698
SNR >20 dB
$<Z_{DR}> = -0.55$ dB
Total number = 7698
SNR > 20 dB
$<Z_{DR}> = -0.55$ dB
Procedure - continuation

4) Precede and follow the measurement at the output of the digital receiver with the measurement from the calibration port
 – For example obtain Δ_{23} as $\Delta_{23} = \Delta_{24} - \Delta_{34}$, by measuring first Δ_{34} then Δ_{24} and again Δ'_{34}
 – Accept the measurement if Δ_{34} and Δ'_{34} are within 0.03 dB!

5) Sun scan followed immediately by noise power measurements in each channel N_h and N_v - subtract these from the total powers P_h and P_v

6) Internal noise generator and sun scan to measure $\Delta_{S4} - \Delta_{34}$

7) Internal signal generator and external generator to obtain $\Delta_{24} - \Delta_{34}$

8) Compute

$$\Delta_{S2} = \Delta_{S4} - \Delta_{34} - (\Delta_{24} - \Delta_{34})$$