Calibrating differential reflectivity on the WSR-88D

Dusan S. Zrnic, Valery M. Melnikov, John K. Carter, and Igor Ivic

Content

- Effects of Z_{DR} bias
 - On rainfall measurements
 - On classification of hydrometeors
- Calibration Procedure
 - Version I: Accounting for all links in the transmitter and receiver paths
 - Version II: Ignoring part of the transmitter path (waveguides to outside of radome)

Effects of bias on Rainfall Measurements RMS error of Best R(Z) = 0.35%0.35 0.3 Z_{DR}bias = 0.2 dB Bias=0.28% Fractional bias and D_{o} (cm) 0.25 015 dB 0.2 D_o 01 dB 0.15 0.1 0.05 0 0.5 1.5 2 2.5 0 3 1 Differential Reflectivity Z_{DR} (dB)

Effects of Bias on Rainfall Measurements

- If the bias in Z_{DR} is 0.2 dB
 - the polarimetric rainfall relation $R(Z, Z_{DR})$ used at moderate rainfall rates (6 to 50 mm h⁻¹) are at least as good (rms errors = 35%) as the R(Z)relation
 - at most values of Z_{DR} the rms errors are smaller
- If the bias in Z_{DR} is 0.1 dB
 - the rms errors in the polarimetric rainfall estimates are smaller than 20%

Effects of Bias on Classification

Effects of Bias on Classification

Calibration Needs for the WSR-88D Network

- <u>Calibration at time of retrofit</u> therefore:
 - Meteorological scatterers OUT
 - Ground scatterers POSSIBILITY
 - Sun POSSIBILITY
 - Instruments REQUIRED
- <u>Maintain calibration all the time</u> therefore:
 - Automatic procedure at end of each volume scan - REQUIRED
- Least disturb the system

Calibration Points for Z_{DR} measurements all paths included

Procedure

- 1) Separate bias in the time invariant part Δ_{C} and the variable part $\Delta_{34}(P_{h})$ so Bias = $\Delta_{C} + \Delta_{34}$ $\Delta_{C} = \Delta_{12} + 2\Delta_{S2} + \Delta_{23}$
- 2) Obtain Δ_{12} directly monitor transmitter power and measure powers at output of EI rotary joints
- 3) To measure bias of the receiver chain use only the output of the digital receiver

Variable Bias $\Delta_{34}(P_h)$, LNA to Dig Rec – Internal Signal Generator

Variable Bias $\Delta_{34}(N_g)$ obtained with the Internal Noise Generator

Bias from EL joints to Dig Rec External Generator above EL Joints

Sun scan: P_h and P_v , and bias component Δ_{S4}

Constant Receiver Bias (Sun to LNA) over a five month period

Bias between LNA and Dig Rec (variations over two 600 min periods)

Error Budget – Estimate

 TR to above El joints, 			
	—	biased:	rms(Δ ₁₂) <0.04 dB?
 EL joints to out of radome, 			
	—	biased:	rms(Δ _{2S}) <0.03 dB?
•	Sun to LNA		
	 Difficult 	not biased:	rms(Δ _{S3}) <0.03 dB
•	LNA to Dig Receiver,		
	 Difficult 	not biased:	rms(Δ ₃₄) <0.04 dB

Total SD value < 0.1 dB

Calibration of ZDR on the WSR-88D Version I: PROCEDURE

- The procedure uses existing components on the WSR-88D and the Sun
- The bias consists of a constant part and a time varying part
- The constant bias is obtained from three sets of measurements (one in the transmission chain two in the receiver)
- The time varying part must be measured automatically at the end of each volume scan
- Measurement over any part of the active receiver path must be preceded and followed by automated rapid measurement of the active part

Calibration of Z_{DR} on the WSR-88D Version I: FINDINGS

- The Z_{DR} BIAS is constant over the dynamic range of the receiver
- Coherent leakage caused by the internal frequency generator
 SOLUTIONS¹
 - EXTRAPOLATE THE VALUES FROM HIGH POWERS TO LOW POWERS
 - VERIFY WITH INTERNAL NOISE GENERATOR
- Abrupt discontinuities in bias caused by differential temperature in the LNA enclosures
 - SOLUTIONS:
 - AUTOMATIC CALIBRATION AT END OF VCP
 - FORCE TEMPERATURE CONTROL IN THE TWO ENCLOSURES TO BE THE SAME
- The SUN is an excellent source for calibration
 - IT HAS ZERO BIAS
 - SD OF ERROR CAN BE MADE MUCH SMALLER THAN 0.1 dB
- Achievable rms error should be ~ 0.1 dB

VERSION II: Calibration of Z_{DR} excluding path 2 (EL joints) to SUN

Variable Bias $\Delta_{34}(P_h)$, LNA to Dig Rec – Adjustment using Sun scan

Repeated Measurements – Transmission Path above EI Joints

- Two power meters, 15 measurements:
 Mean = -0.057 dB, SD = 0.006 dB
- One power meter, connected and disconnected 10 times

-Mean = -0.088 dB, SD = 0.004 dB

Previous measurement: Mean ~ -0.06 dB

Error Budget – Estimate

TR to above EL joints,

biased: rms(Δ₁₂) <0.03 dB?

EL joints to out of radome,

ignore: rms(Δ_{2S}) <0.06 dB?

Sun to Dig Receiver

Easy not biased: rms(Δ_{S3}) <0.03 dB

Total rms value < 0.08 dB

Calibration of ZDR on the WSR-88D Version II: PROCEDURE

- The procedure uses existing components on the WSR-88D and the Sun
- The bias consists of a constant part and a time varying part
- The constant bias is obtained from two sets of measurements one set has no BIAS
- The time varying part must be measured automatically at the end of each volume scan
- Much easier to make in the field

Calibration of ZDR on the WSR-88D Version II: FINDINGS AND ISSUES

- Sun equality of the H and V polarizations
 - NCAR's redundant measurements during quiet (no sun spots) period indicate excellent match
- Sun standard deviation of measurements
 - NSSL's result ~ 0.028 dB
 - NCAR's result ~ 0.024 dB
- Measurement in the transmitter chain
 - -Bias at couplers above EI rotary joints
 - Value of ignored bias from the EL joints to outside of radome

Measurement in Drizzle: Z Field

Measurement in Drizzle: Z_{DR} Field

Histogram of Z_{DR} in Drizzle

Path to Resolution

- NSSL measurement on the RRDA
 - Automatic part of calibration has been implemented, it enables perfect relative tracking of the bias
 - Compare results from the procedure with measurements in precipitation at 60 deg elevation
- NWS to check the precision and bias of the couplers?
- NCAR measurements ?

END

Procedure - continuation

- 4) Precede and follow the measurement at the output of the digital receiver with the measurement from the calibration port
 - For example obtain Δ_{23} as $\Delta_{23} = \Delta_{24} \Delta_{34}$, by measuring first Δ_{34} then Δ_{24} and again Δ'_{34}
 - Accept the measurement if Δ_{34} and Δ'_{34} are within 0.03 dB!
- 5) Sun scan followed immediately by noise power measurements in each channel N_h and N_v subtract these from the total powers P_h and P_v
- 6) Internal noise generator and sun scan to measure Δ_{S4} Δ_{34}
- 7) Internal signal generator and external generator to obtain Δ_{24} Δ_{34}
- 8) Compute

$$\Delta_{S2} = \Delta_{S4} - \Delta_{34} - (\Delta_{24} - \Delta_{34})$$