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Impact of Range Correction on
Precipitation Estimates and
Hydrologic Model Simulations

Long-term consequences of ignoring
range effects in radar estimates

Impact on simulations of river flow




Effects of the Vertical Profile of
Reflectivity (VPR) on Surface Rainfall
Estimates from Radar

> Particularly in cool-season situations,
radar estimates are biased high in the
zone where the lowest radar beam

Intersects the melting layer

> At longer ranges, radar estimates are
biased low because the radar detects only
SNOW.

> Range eflects are clearly evident in rainfall
estimate fields derived from a single radar




Range Effects on 22-h Rainfall Accumulation From
WSR-88D KCCX, 2 January 2003

Estimate with Operational estimate,

mean-field bias correction, from multiple radars and rain gauges
but no range correction
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Range Correction Algorithm (RCA)
Convective-Stratiform Separation Algorithm (CSSA)

> Scientific algorithm (RCA/CSSA)
documented by Seo et al. 2000 (Journal of
Hydrometeorology)

> Impacts of range correction on radar/rain
gauge correlations presented to NEXRAD
TAC, July 2004

> Members of TAC suggested documenting
Impacts of range correction on hydrologic
streamiflow simulation




Study Methodology - |

> Sensitivity of hydrologic models can be
documented with any reasonable estimates of
precipitation

> We designed an observing systems simulation
experiment (OSSE) to show the impact of range
effects and range corrections in radar rainfall on
hydrologic simulations of several stream basins




Study Methodology - |l

> Can demonstrate that RCA/CSSA adjusts
single-radar estimates and streamfilow.
simulations toward those from the operational
multisensor precipitation algorithm, which
Includes manual corrections by experienced
hydrologic analysts

> Can also demonstrate sensitivity of runoff and
stream discharge to precipitation input




Study Methodology: - Il

> We selected a test radar umbrella in central
Pennsylvania (KCCX) with a dense rain gauge
network and coverage by overlapping radars

> Streamflow simulations for several basins at
various ranges from the radar were made, with
operational radar/gauge precipitation fields

> Simulations were repeated using only radar
rainfall estimates from KCCX:
« With original radar product (Digital Precipitation Array)
« With mean-field bias adjustments only

» With range correction and mean-field bias
adjustments




Impact of Range Correction on Estimates for 2 January 2003 Case
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Study Methodology - IV

» Streamflow was modeled for the period
October 2002 — January 2003, a wet
interval withi several major rain events

» Radar precipitation estimates over the
period exhibited classic behavior:

o Best estimates near the radar

» Overestimation at middle ranges,
~ 80-140 km

» Underestimates beyond 140 km




Hydrologic Model

- Hydrology Laboratory Research Distributed
Hydrologic Model (HL-RDHM) (Reed et al.
2004)

- Distributed hydrologic model, 4-km grid mesh,
one-hour time step

- Use of distributed HL-RDHM enabled rapid
generation of streamflow simulations for multiple
basins

- Employed a priori parameters for soil
characteristics

.+ HL-RDHM does show: Impact ofi improving the
accuracy ofi precipitation| Input




Study Methodology — Precipitation Inputs

> OPERATION: operational multisensor
estimates, from Middle Atlantic River
=orecast Center

> DPA: KCCX radar estimates

> DPA-MEB: KCCX radar estimates with
mean-field bias applied (the only practical

method infmany areas with few rain
gauges)
> DPR-MEB: KCCX radar estimates with

range correction and subsequent mean-
fieldl bias adjustment




Sample Hydrograph For January 2003 Event

Hydrograph of SXTP1 Basin
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Precipitation Results:

> For DPA (original radar product), KCCX
umbrella as a whole is dominated by radar
underestimation

Mean-field bias correction (DPA-MFEB) (the only
correction that is possible in gauge-poor areas)
overcorrects and causes overestimation in

middle of umbrella

Range-corrected radar estimates (DPR-MEB) do
not suffer same degree of underestimation at
long ranges, therefore mean-field bias
adjustment does not lead to extreme
overestimation cleser to raaar




Impact of Range Correction on Radar Rainfall
MEAN AREAL PRECIPITATION

4-month (Oct. 2002 to Jan. 2003) Total MAP
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Impact of Range Correction on Radar Rainfall
MEAN AREAL PRECIPITATION % ERROR
(relative to OPERATION analysis)

Percentage Error of 4-month MAP
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Streamflow Results:

> Discharge has nonlinear response to
precipitation (an effect generally observed in
natural basins)

> In WLBP1, 50% overestimation of precipitation
eads to 140% overestimation in discharge

> In operational practice, systematic over- or
underestimation must be corrected manually by
the hydrologic forecaster

> In some River Forecast Centers, radar range
effects preclude direct use of radar estimates in
hydrologic models, necessitating| use of rain
gauge data and a 6-h (vs. 1-h) time step




Impact of Range Correction on Radar Rainfall
Total 4-month Stream Discharge

4-month (Oct. 2002 to Jan. 2003) Total Flow
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Impact of Range Correction on Radar Rainfall
Total 4-Month % Discharge Error Relative to OPERATION

Percentage Error of 4-month Flow

B DPA

B DPA-MFB

B DPR-MFB

S
O
S
o
e
>

Range from radar increasing ———




Conclusions:

> RCA/CSSA consistently adjusted precipitation
fields from a single radar toward reference fields
derived from multiple radars, rain gauges, and
expert input.

> Adjustment of single radar estimates to correct
for mean-field bias alone led to degradation of

streamflow simulations

> Alter adjustment by RCA/CSSA, single-radar
precipitation provided streamflow simulations
consistently closer to simulations based on
reference precipitation input




Range Correction Will Still Be
Needed in the Dual-pol Era:

o Horizontal Z-R rainfall will still be produced
and possibly integrated with the dual-pol
algorithm

o VPR still affects dual-pol estimates (e.g.
difficult to estimate surface rainfall when the
radar can detect only melting layer or dry.
sSnow)

o llechniques for congquering VPR effects with
dual-pol ebservations alone will take some
time




HOSIP Status of RCA/CSSA:

o Yydrologic © perations and - ervices
mprovement : rocess

o Internal Office ofi Hydrologic Development
process similar to National Weather Service
OSIP

» HOSIP Stage 2

Statement of Need approved

Concept of operations and general requirements
now. being documented

o Will apply for TAC approval when complete
technicall requirements have been developed
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Probabilistic Quantitative
Precipitation Estimates From
Radar

Why do we need them?

How can they be used?

Collaboeration Between OHD and University of lowa




Radar-to-Raingauge Comparisons Are Often Discouraging...

LWX Warm Season (05/04 - 10/04) ( * —- near range; o — far range)

] ]
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DHR-derived 1-h rainfall { mm)

One-hour rainfall, radar vs. gauge, KLWX, April-October 2004




We can produce radar rainfall estimates
that are unbiased when summed over
many hours, but:

> Large random errors remain;

> Radar appears to underestimate light
amounts and overestimate heavy.
amounts, for accumulation intervals
pbetween 1 and 24 hours

> WWhere does probability information come
In? Distribution| ofi pessible rainfall values.




If you are told:
“The average winning number Is 499.5"
how do you play the game?

> In Pick 3, any number from 0/ to 999 is
equally likely to win (uniform distribution)

> But what if they generated numbers by.
drawing just two ping pong balls and

adding 450 to the result? (different uniform
distribution)

> But what I they generated numbers by
tossing 9 coins? (normal distribution)




Knowledge of the error distribution
IS critical in decision making
> Classic examples include flash flood

decisions, crop and irrigation
management, firefighting

> Basic principle: ifi the probability of the
event exceeds the cost/loss ratio, then
take action as If the event were to happen




Probabilistic Relationships Between
Radar and Rain Gauge Estimates
> Most common forms ofi bias correction are

based on long-term collections of 1-h
radar/gauge paired observations

> Actual bias between radar estimates

based on Z-R and rain gauges depends
on magnitude of the rainfall rate

> A common method ofi selecting radar
rainfall alert thresholds (fraction of critical
ground truth value) Is not statistically
reliable




Common Operational Strategy For
Flash Flood Warnings

> lake action when radar rainfall estimate iIs
80% of Flash Flood Guidance (FFG) value

o Closer examination of basin rainfall history.
o Call for spotter reports

> However, threat of actual rainfall
exceeding FFG is strongly dependent on
the radar estimate itself




Probability of Gauge Rainfall 2 120% of Radar
Estimate

a1
o

AN
o

W
o

0.5 1 1.5

| -
©
e
T
¥
N
<
A
n
)
o
-
©
o
=
T
4
X

Radar estimate, inches (bias corrected)

Data from KTLX, KINX, KSRX, 2004-2005 warm seasons




Probability of Gauge Rainfall =2 120% of
Radar Estimate

> Probability of exceeding a given
gauge/radar ratio decreases with radar
rainrate

> For a radar estimate of 0.4 inch, there Is a

45% chance that rainfall will exceed 0.5
Inch
> For a radar estimate of 1.5 inches, there IS

only a 15% chance that rainfall willlexceed
1.8 Inches




Probabilistic Relationships Between
Radar and Rain Gauge Estimates

> Work carried out at University of lowa
(Krajewski, Ciach, Villarini) shows that
radar rainfall' errors can be modeled with a
set ofi power-law functions

> Results confirmed on other data samples
by OHD




After correcting radar estimates for
overall long-term bias:

> Radar underestimates lighter amounts and
overestimates higher amounts

> A simple power law relates expected
rainfall to initial Z-R rainfall estimate




After Correcting Radar Estimates For Long-Term
Bias, a Magnitude-Dependent Bias Remains...

10 20 30 40 50
1-h Radar Rainfall Estimate, bias corrected, mm
KTLX, 1996-2003

From Krajewski and Ciach, 2005




Expected 1-Hour Rain Gauge Value As Function of Radar Estimate

Gauge/MFB radar bias

Radar estimates
adjusted for bias
(gauge/radar):

KTLX bias: 0.7
KLWX bias: 1.07
KFFC bias: 0.93
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Representation of Random Errors

> It Is possible to represent errors as arithmetic
(gauge minus radar) or multiplicative (gauge
divided by radar)

> Multiplicative form has some distinct statistical
advantages

> Multiplicative errors have a near-normal
(Gaussian) distribution, making estimation of
probabilities relatively simple

> Magnitude ofi multiplicative error standard
deviation| Is a power-law: function of rainrate

Error = (Gauge precipitation) / (Radar precipitation)

37




Standard Deviation of The Radar Estimate Error
(Spread of Estimates) Can Also Be Modeled As A
Power-Law Function:
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1-h Radar Rainfall Estimate, bias corrected, mm

From Krajewski and Ciach, 2005



Summary of Statistical Model for.
Errors:

> Rainrate-dependent bias Iis approximated by a
power-law curve

> Standard deviation of multiplicative error Is also
a power-law curve

> Distribution of multiplicative errors for any given
radar estimate is approximately normal

> Formulation of proebability ofi gauge rainfall
exceeding a critical value:




Formulation of Probability of Rainfall (RR)
Exceeding a Critical Value THRES

P (RR > THRES) = 1 - ©(X)

where:

¢(A’)=%+%€#(X)

and

THRES | THRES 1
v_Y=H _ DpA’ a(B-RR)’

o2 o2 :[ﬂ+d(B~RR)£]\E

B is long-term gauge/radar bias;

a,b are parameters of bias power law;

c,d,e are parameters of standard deviation power law;
RR is initial radar estimate;

THRES is FFG or other critical rain amount




Dissemination of Probabilistic Information

> Power-law parameters (a,b,c,d,e) will be
determined from extended gauge/radar
sample

> Parameters have seasonal, site, and
rainfall duration dependence

> Parameters would be included as part of
Supplemental Precipitation Data product,
and appended to digital precip products

> Documentation will be made available to
end users




Application of Probabilistic QPE:

> Probability equation could be incorporated
as new option in FEMP, along with (Radar-
FFEG) and (Radar/FEG) displays

> Ihere Is some interest in a new graphic
product with; probabilities of exceeding a
given amount

> Individual users could apply. to:
o lrrigation, pesticide decisions
o \egetative wetting for agriculture, firefighting




PQPE In The Dual-Pol Era

o It appears that horizontal Z-R rainfall will still
be produced and possibly integrated with the
dual-pol algorithm

o Probability information derived from Z-R
rainfall is still statistically valid

o WWhen adequate samples of data from dual-
pol rainfall algorithms have been collected,
the same methodology used for current Z-R
rainfall will be applied to dual-pol

o New probability parameters will reflect
reduction in bias or magnitude of random
errors




HOSIP Status of PQPE:

o Yydrologic © perations and - ervices
mprovement - rocess

o« HOSIP Stage 2

Statement of Need approved
Concept of operations and general requirements

now being documentead

o Will apply for TAC approval when complete
technical requirements have been developed




Questions?




Supplemental Slides




Flash Flood Guidance

> An estimate of the rainfall required to

cause small headwater streams to reach
bankfull

> Commonly expressed as 1-h, 3-h, 6-h
amounts

> Routinely produced by River Forecast
Centers based on soll type, antecedent
rainfall




1-Hour FEG from MAREC,

Flaah Flood Guldance

for 1/24/2006/00z. Praparad 1/24 at 0217z
1—HOUR YALUES

1—-HOUR VALUES

05" or LESS
0B to 1.0"
11" to 1.5"
1.6" to 2.0"
21" to 25"
MORE THAM 2.5"
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