

RDA C LANGUAGE CODING STANDARDS (CCS)
WPI0052

Prepared by:
WSR-88D Radar Operations Center

1313 Halley Circle,
Norman OK 73069

Table of Contents
1 Introduction..2
2 C File Organization..2

2.1 Declaration Section .. 3
2.2 Program Section ... 4

3 Header files ..4
4 Comments ..4

4.1 Doxygen ... 4
4.2 Top of File comments .. 5
4.3 Top of Function Comments.. 5
4.4 Global definition comments ... 6
4.5 Descriptive comments .. 6

5 Naming Conventions..6
5.1 File Naming.. 7

6 Variable Declarations...7
7 Macros & Constants...8
8 Control Structures ..9
9 Code Layout...10
10 Compiler Settings...11
11 Existing Code...12

 1 Introduction

The RDA C Coding Standards (CCS) defines a set of coding standards and common practices related to
developing software in the Radar Data Acquisition (RDA) project using the C programming language.
The standards and practices proscribed follow the ANSI C and POSIX standards. This CCS is an
adaptation of the ORDA C Coding Standards document written January 21, 2000, which was largely
based on the proposed ORPG C Coding Guidelines document.

This CCS is to be followed in all C code developed for the RDA project, except with special
permission from the RDA programming group leader, or as described in Section 11, ‘Existing Code”.

For this document, the following definitions apply:
module The code in one source file.
external Defined outside of the current module
global A definition that can be accessed across modules.
process A group of modules that work together to create functionality

 2 C File Organization

A C language source code file is organized as follows:

Declaration Section
 System include files
 Local include files

 Constant definitions
 Macro definitions
 Local type definitions
 Global variable declarations
 Local function prototypes
Program Section

 2.1 Declaration Section

Following the top-of-file comment block is the declaration section. This consists of the system include
files, local include files, constant definitions, macro definitions, local type definitions, global variable
declarations, and finally local function prototypes.

Place a blank line between each group listed.

Include only those files that are necessary for the module.

Include files in order of decreasing generality whenever possible. List system include files first,
followed by library include files, followed by include files specific to the process.

List file scope constants and macros next. Constants and macros used in only one function may instead
be placed just above the function in question.

Data type declarations should follow the constants and macros. Place data types in a separate header
file when they are used in more than one file.

Next declare global variables. These include variables used at the file scope, and variables with
external linkage. List variables in order of descending scope (external linkage first).

Place file scope function prototypes next. Function prototypes with external linkage should be placed
in a separate, process level include file. Include the static keyword in the function prototype, unless
there is a compelling reason not to (such as unit testing).

Example:

#include <stdio.h>
#include <math.h>

#include "dspc.h"

#define RADIAL_BUFFER_SIZE 512

struct localstruct
{
 int hi;
 int mom;
}

extern int Global_counter;
static int File_counter;

static int dspc_local_function();

Comments can be used to visually highlight sections of the definition section, such as labeling the
beginning and end of the function prototype section.

 2.2 Program Section

The program section immediately follows the heading section. It contains the source code for the
functions defined in the file.

Function definitions are separated in the file by the following comment:

/* -- */

For functions that are only used in the file they are defined in, use the static keyword, unless there is a
compelling reason not to (such as unit testing).

static int helper_function()
{
}

 3 Header files
Use '<' and '>' to include system header files and quotation marks for all other header files:

#include <stdio.h>
#include "dspc.h"

Do not use absolute or relative path names to point to header files. Instead, use the -I<dir> C compiler
command line parameter to direct the compiler where to search for header files.

Header files often include other header files. When this occurs, one or more header files may be
included more that once, creating compiler errors if not guarded against. To prevent multiple header
file inclusion, use the following template for every header file:

#ifndef MULTIPLE_EXCLUSION_SYMBOL
#define MULTIPLE_EXCLUSION_SYMBOL
/* Body of header file */
#endif /* MULTIPLE_EXCLUSION_SYMBOL */

 4 Comments

 4.1 Doxygen

Doxygen (http://www.doxygen.org) is used in the RDA to automatically extract certain types of comments
and code structure to generate formatted HTML pages.

Documentation comments should immediately precede the declared entity, with no blank lines in
between. These comments must start with /** instead of the standard /* in order for doxygen to pick

them up.

Although the comments are used to generate formatted HTML pages, the use of HTML tags in
comments is strongly discouraged. The comments will be read in the source code more often than from
the HTML pages, so favor readability in the source code over readability in the doxygen generated
pages.

Doxygen tags are specific words preceded by the '@' character. Tags in use in the RDA C code include
@file, @brief, @see, @param, @returns, and @todo. For more tags, see the doxygen documentation
(http://www.doxygen.org).

 4.2 Top of File comments

Each file should start with a comment block giving an overview of the contents of the file. The first
line should be the doxygen @file tag, giving the filename (used for source code printouts). The second
line should be the @brief tag, giving a short, one line description of the file. These tags should be
followed by a longer, more detailed description of the file. Other doxygen tags, such as the @see tag
may be added as appropriate.

Top-of-file comment blocks should begin with /** to enable doxygen to process them.

Example:
/**
 * @file filename.c
 * @brief A short, one sentence description of this file.
 * @see other files related to this one. (optional)
 *
 * A longer, detailed description of the contents of the file.
 */

 4.3 Top of Function Comments

Each function should be prefaced with a comment block describing the function in full. The first
sentence should be a brief overview of the function. When possible, this sentence should be no longer
than one line. Further sentences and paragraphs should go into a detailed description of what the
function does, why, and anything else the programmer calling the function may need to know.

The function block should end with @param tags, one per parameter of the function, and one @returns
tag.

The @returns tag can be omitted if the function's return type is void.

Top-of-function comment blocks should begin with /** to enable doxygen to process them.

Example:

/**
 * Send a radial to RPGC using the radial_lb linear buffer. This
 * operation returns FAILURE on any error reported by the LB library
 * in sending the radial and sets G.lb_error to the LB error code
 * received.

 *
 * @param radial - Radial in the RPG ICD radial format
 * @returns SUCCESS or FAILURE
 */

 4.4 Global definition comments

Non-trivial global level definitions should be prefaced with a comment describing the definition. Often
these comments need only be one line long. They should begin with /** to enable doxygen to process
them.

 4.5 Descriptive comments

Additionally, comments should be used to describe code that is unusual or otherwise not clear. Do not
add comments that simply repeat the code in English. Instead, describe at a higher level what a block
of code does, or why a confusing line is necessary.

Comments should be indented to the same level as surrounding code. They should be full sentences
when reasonable to make them easier to read. An exception to this is variable descriptions.

When a comment is less than one line long, use this form:

/* This is a short comment. */

When a comment is multiple lines long, use this form:

/*
 * This is a multiline comment. Despite only being two
 * lines long, it still uses this format.
 */

Whenever comments are needed, consider whether use of named constants or additional helper
functions could be used to make the code more obvious.

 5 Naming Conventions

Avoid names that differ only by letter case, such as average and AVERAGE.

Do not use names that conflict with system names, such as printf or write.

Local variables serving as loop counters do not need to be descriptive, but certainly can be.

Limit the length of identifiers to 24 characters.

Use starting capital letters for global variables. Begin non-global variable names with lower-case
letters.

Use descriptive variable names.

Words in variable names can be separated with underscores or by camelCase notation:

int rdac_check_log_files()
int rstsCheckStatus()

In existing files and processes, use the word separation style in use by existing code. When adding new
files, prefer underscores.

Typedef names often have a _t added to the end of the name to denote that the use of a typedef. In
some cases, a _tS suffix indicates a typedef'ed structue, a _tA indicates a typedef'ed array, and a _tE
suffix indicates a typedef'ed enum.

Each process or library has a prefix that all global functions in that task or library use. For the RDA
library, the prefix is RDA. For each task, the prefix is the process abbreviation in lower case. For
example:

int RDA_log_msg()
void wdog_check_procs()
int rstsCheckStatus()

Functions only used in the file in which they are defined do not have to use the prefix.

 5.1 File Naming

Source files use a similar prefix. The only difference is that it is always lowercase. The name of the
source file that contains the main function for each process should be named with the suffix "_main.c".
The main header for each process should simply be the prefix followed by ".h". Examples:

dauc_main.c
wdog_utils.c
rda_log_msg.c
vcpc.h

 6 Variable Declarations

Place unrelated declarations of variables of the same type on separate lines. Variables related in a
meaningful way can be grouped into a single statement, but such cases should not break the statement
into multiple lines. Include a comment for each variable if the meaning is not obvious from its name.
Typically a loop counter such as 'i' does not need to be commented, especially when declared near the
loop itself. Comment global variables for automatic documentation.

double power;
double latitude, longitude;

When defining a variable as a pointer, associate the pointer qualifier '*' with the variable name, not the
variable type.

char* ptr1; /* Bad */
char *ptr2; /* Good */

Explicitly initialize a variable whose initial value is important. Do not rely on automated initialization
of the variable to zero.

Include at least one digit on either side of the decimal point for floating point variables.

power = 98.0;
power = 0.3;

When initializing long variables with constants, use an uppercase L:

long starting_slant_range = 1000l; /* Bad: Looks like the number 10001. */
long starting_slant_range = 1000L; /* Good: Clearly an L. */

 7 Macros & Constants

Avoid complicated macros. Use functions instead, wherever possible.

Avoid hard coding numerical constants. Using a descriptive name makes software maintenance much
easier since constant values can be changed at one place in the code. Using the numerical constant 0 is
acceptable when initializing variables. Use uppercase for constant names and seperate words in the
name with underscores. Do not use the names of numbers themselves, such as FOUR and TEN.

Use the constant NULL for pointer values rather than 0 as a constant.

Use literals for simple character constants rather than numbers. E.g. 'A' instead of 65. If non-text
characters are used, use their octal form (e.g. \007 or \07).

Use an enumeration to define constants in logical groups when the actual values of the constants are
not important. As with other constants, use uppercase characters to construct the constant name and
comment all enumerations for automatic documentation.

enum waveform_types
{
 CONTIGUOUS_SURV,
 CONTIGUOUS_DOPPLER,
 BATCH,
 UNAMBIGOUS_DOPPLER
};

Use existing constants when possible. In particular, use of SUCCESS, FAILURE, TRUE, and FALSE
from rda_constants.c as return values is preferred.

Prefer named constants or enums over arbitrary integer codes. This reduces documentation and
improves readability.

return 2; /* BAD */
return BATCH_MODE; /* GOOD */

When using functions that return TRUE and FALSE, check against the expected constant directly, rather
than 1 or 0, or zero and non-zero.

If (RDA_is_okay()) /* BAD */
{
}
if (RDA_is_okay() == TRUE) /* GOOD */
{
}

When testing for errors in a function that returns SUCCESS or FAILURE, check that the return value is
not SUCCESS, rather than test for equality to FAILURE. This way, more error codes can be added
later without breaking existing code.

if (RDA_function() == FAILURE) /* BAD */
{
}
if (RDA_function() != SUCCESS) /* GOOD */
{
}

 8 Control Structures

Do not use the 'goto' statement. Note: some code in the VCPC process uses goto. This code is left over
from the SIGMET INGEST process that VCPC was built on.

Place null bodies of for or while loops on a separate line, and comment them so that it is clear a null
body is intended.

for (i = 0; product_ids[i] != requested_product; i++)
{
 /* Null loop body intended. */
}

Always use braces in conditional statements and loop statements.

Avoid using braces surrounding each case of a switch statement. When cases are long or complex
enough that braces improves readability, consider creating a new function to handle the case.

Always add a comment when "falling through" a switch statement case on purpose. Each case should
end with either 1) a break statement followed by a blank line or a closing bracket, or 2) a "falling
through" comment with no blank line before the next case.

switch (expression)
{
 case A:
 statement;
 break;

 case B:
 statement;
 /* Fall through to next case. */
 case C:
 statement;
 break;

 default:

 statement;
}

For all switch statements, unless every value of an enumeration is handled, include a default case.

Avoid embedded assignment, except in instances where there is no cleaner way to do the same task
without embedded assignment. The following are examples of such embedded assignments:

while ((c = getchar()) != EOF)
{
}
if ((obj_ptr = malloc(number, size)) == NULL)
{
}

 9 Code Layout

Place all opening and closing braces on separate lines.

Do not use local declarations that override higher-level declarations with the same name.

Place each program statement on a separate line.

No individual program line should exceed 80 characters in length. If a program statement reaches this
limit, break it into multiple lines (not necessarily multiple statements.)

Indentation helps reveal the logical structure of your code. Use four spaces when indenting.

Group related program statements together and use blank lines to separate them from other statements.

Do not put spaces on the inside of parentheses, unless doing so improves readability with multiple sets
of parentheses:

printf("Begin logging.\n");
if ((ret = RDA_login()) != SUCCESS);

Do use a space on either side of binary operators:
a + 1
this && that

Do not use a space for unary operators:
++j
*ptr

Do not use a space before semicolons.

Put a space between the if, while, for, and switch keywords and their corresponding opening
parenthesis. Do not put a space between function names or the sizeof keyword and their corresponding
open parenthesis.

if (thingy)

{
}

for (j = 0; j < n; j++)
{
}

printf("Begin logging.\n");
memset(ptr, 0, sizeof(*ptr));

Splitting long strings of conditional operators onto separate lines improves code readability. Similarly,
break elaborate 'for' loops onto different lines.

if (radial.waveform_type != CONIGUOUS_SURVEILLANCE &&
 radial.waveform_type != CONIGUOUS_DOPPLER &&
 radial.waveform_type != STAGGERED_PRF)
{
}

for (cell = index_begin, data_start = 0;
 cell < MAX_RANGE_CELLS;
 cell++, data_start++)
{
}

Do not use tabs in source files.

Use a single space between comma-separated arguments in a list:
printf("Nyq Vel: %f Unb Rng: %d\n", nyqust_vel, unambig_rng);

 10 Compiler Settings

Always compile with -Wall so warnings are enabled.

Treat warnings as errors. Exceptions to this may sometimes occur due to external libraries.

 11 Existing Code

Some code used in the RDA, notably SIGMET rvp8 code in CPCI-02 and rcp8 code in CPCI-19 was
originally written using other coding styles. When writing code for a module that does not conform to
these guidelines, adopt the style of the existing code.

