
Document Number 2630020
WSR-88D ROC
7 February 2008
Version - Final

 Radar Product Generation System

 (RPG)

 C CODING STANDARDS
(WPI0051)

SUBMITTED AND
APPROVED FOR
USE AS PRODUCT
BASELINE BY: _____________________________________ Date:
 Steve Smith
 Engineering Team Lead
 WSR-88D Radar Operations Center

1

 TABLE OF CONTENTS
 Introduction... 3
 Purpose...3
 Definitions and Conventions………………………………………………………. 3
 Document Organization.. 3
 File Organization... 4
 Heading Section…………………………………………………………………….4
 Prologue…………………………………………………………………………….4
 System / Local Include Files………………………………………………………..5
 Constant Definitions………………………………………………………………..5
 Type Definitions……………………………………………………………………5
 External Global……………………………………………………………………..6
 External Static…………………………………………………………………….. 6
 Function Prototypes………………………………………………………………..6
 Program Section……………………………………………………………………7
 Function Organization…………………………………………………………….. 7
 Function Heading Block………………………………………………………….. 7
 Function Return…………………………………………………………………….8
 Include Files………………………………………………………………………. 8
 Readability and Maintainability……………………………………………………9
 Brace Style…………………………………………………………………………9
 Whitespace………………………………………………………………………..10
 Horizontal Spacing………………………………………………………………..11
 Vertical Spacing…………………………………………………………………..12
 Indentation………………………………………………………………………...12
 Comments…………………………………………………………………………12
 Block Comments………………………………………………………………….12
 One-Line Comments……………………………………………………………...13
 In-Line Comments………………………………………………………………..13
 Naming Conventions……………………………………………………………..13
 Task/Library Filename Conventions……………………………………………..14
 "main" Source Files………………………………………………………………14
 Ancillary Source Files……………………………………………………………14
 Library Public Header Files………………………………………………………15
 Task/Library Private Header Files………………………………………………..15
 Task/Library Module Name Conventions………………………………………..15
 API Functions…………………………………………………………………….13
 Intratask/Intralibrary Public Functions…………………………………………...16
 File-Scope Functions……………………………………………………………..16
 Definitions / Declarations………………………………………………………...16
 Constants…………………………………………………………………………16

 #define……………………………………………………………………………17
 Const Modifier……………………………………………………………………17
 Enumeration Type………………………………………………………………..17
 Macros……………………………………………………………………………18
 Structures……………………………………………………………………….. 18
 Variables…………………………………………………………………………18
 Numbers………………………………………………………………………....19
 Functions……………………………………………………………………….. 19
 Statements and Program Control………………………………………………..20
 Statements……………………………………………………………………….20
 Program Control…………………………………………………………………21
 Loops…………………………………………………………………………….21
 if, if-else, and switch…………………………………………………………….21
 Tests……………………………………………………………………………. 23
 Portability………………………………………………………………………. 24
. References……………………………………………………………………….25
 Appendix A. Infrastructure Task/Library Prefixes………………………………27
 Appendix B. RPG Task/Library Prefixes………………………………………..28

2

 RPG C Coding Standards

1 Introduction

The RPG C Coding Standards (CCS) defines a set of coding standards and common practices
related to developing software for inclusion into the Radar Product Generation (RPG) software
baseline using the C programming language. The standards and practices defined in this
document closely follow the ANSI C and POSIX standards.

1.1 Purpose

This document provides a road map to direct the RPG scientific applications software developers
and implementers as they develop and implement their applications using the Common
Operations Development Environment (CODE). Developing software using standard principles
and practices increases portability reduces software maintenance costs and improves source code
readability.

This document is not intended to be a C programming tutorial. It is assumed the reader has a
sound understanding of the C language, its terminology, constructs and syntax.

1.2 Definitions and Conventions

For this document, we define function as any unit of code that exists in one C source file. A file
may contain one or more functions. Functions within a file are generally logically connected.
Include files are the exception since this type of file generally do not contain functions.

An identifier defined or declared outside all functions in the file is known as an external variable.
If access to an external variable is restricted to the file in which the variable is defined, the
variable is a static variable and is said to have file scope. An external variable that can be
accessed across files is a global variable and is said to have global scope. A task or program
consists of functions that are grouped together for a specific purpose.

1.3 Document Organization

The CCS begins with the general issues of file organization, readability, and maintainability. It
continues with definitions/declarations, statements, and program control. Following that, the
CCS addresses the issue of portability. Lastly, it includes references to documents used to create
this document.

 3

 RPG C Coding Standards

2 File Organization

A source file or module contains one or more logically connected functions. Each function is
organized into two sections: a heading section and a program section. Each section is separated
by at least one blank lines or other type of delineation such as a line of asterisks beginning and
ending with the comment symbol.

2.1 Heading Section

Below is the recommended ordering of the parts that comprise a program's heading section.

 /* Prologue */
 /* System include files / Local include files */
 /* Constant definitions / Macro definitions / Type definitions */
 /* Global variables / Static global variables */
 /* Internal static functions */

2.1.1 Prologue

The prologue describes the file's contents. It should include a statement of the purpose of the file
and its relation to the overall program. The prologue should mention any use or requirements of
external files and any other information or dependencies on which the source code file or module
relies. The following is the preferred template for the prologue portion of the heading section.

 /**
 Description:
 Describe the overall purpose of the functions within
 this file and their relation to the overall program.

 Dependencies:
 Describe any dependencies or requirements to
 external files or information.

 Notes:
 Describe any other pertinent information that would
 be useful to a maintainer of this file.

 **/

Since Resource Control System (RCS) is used, the following information is at the start of the
heading section.

 4

 RPG C Coding Standards

 /*
 * RCS info
 * $Author: $
 * $Locker: $
 * $Date: $
 * $Revision: $
 * $State: $
 * $Log: $
 *
 */

The RCS template fields are automatically populated by RCS when the file is integrated into the
RPG baseline.

2.1.2 System / Local Include Files

A list of included header files follows the prologue. Included header files have file-wide scope,
so placing this information at the top of the file underscores this influence. The developer should
comment any include file whose purpose is not obvious. Include only those header files that are
necessary for that file. List system include files first, followed by local (developer created)
include files.

2.1.3 Constant Definitions

The file scope constants should appear after the include files. Placing definitions at the top of the
file allows for easier location and identification when searching for them. Constant definitions
should be defined using #define. Constant names should be descriptive and appear in all upper
case capitalization.

Example:

 #define INDEX_OF_REFRACTION 1.21

2.1.4 Type Definitions

Data type definitions (typedef) local to the file should follow the constant definitions. Place data
type definitions in a header file when those types are global, used within several files. Type
definition names should be appended with _t.

 5

 RPG C Coding Standards

Example:

 typedef struct node {

 int *data; /* Pointer to node data. */
 Node_t *next; /* Pointer to next node in list. */

 } Node_t;

2.1.5 External Globals

External (to file) global variables are global-scope variables. Declare them in a file where
they are initialized, all other files in which the variables are referenced should precede the
storage class identifier with extern. Use descriptive names and at a minimum, the leading
character of the name should be capitalized. To further emphasis these are global variables, it is
good practice to identify these variables with leading characters identifying the task.

Example:

 extern int PBD_start_of_volume_time; /* Used by pbd to store volume
 time. */

2.1.6 External Static

External (to function) static variables are file-scope variables. Declare them in the module in
which they are used. Precede the definition with the storage class identifier static. Use
descriptive names and at a minimum, the leading character of the name should be capitalized.

2.1.7 Function Prototypes

Function prototypes inform the compiler about the existence of functions before they are defined.
This allows the code to compile without having to ensure all functions are defined before they
are called. Place function prototypes after the external static variables.

Functions used only in the module in which they are defined are static functions. Include the
keyword static in the function prototype. Function names should be descriptive and at a
minimum the first character of the function name should be capitalized.

Functions used in multiple files should be declared in a header file. Function names should be
descriptive. The leading character(s) of functions used in multiple files should be capitalized and
denote the file in which they are defined.

Example:

 6

 RPG C Coding Standards

 PBD_process_header(); /* Function used by Process Base Data task. */

2.2 Program Section

The program section immediately follows the heading section. It contains the body of the source
code in the file. It may also contain code for the one or more functions defined in the module.

2.2.1 Function Organization

2.2.1.1 Function Heading Block

Include a heading block before the code of every function. A function with little or no inputs
whose purpose is obvious such as is_time_valid () may not appear to need a heading block.
However, information such as time units, time for what, and valid time limits can make future
software modification or maintenance more intuitive and easier. The function heading block
contains the information shown in the function heading block template given below.

 /**
 Description:

 Input:

 Output:

 Returns:

 Notes:

 ***/

Following is the description of the function heading block items:

 A description of the function including its purpose.
 A list of function input arguments with descriptions, including any constraints on input

arguments. Should also list any global variable input to the function which are not
explicitly listed as a function argument.

 A list of function output arguments with description, including constraints on output
arguments. Any argument which has it value(s) modified should be listed as an output
argument. Should also include any global variable modified in the function which are not
explicitly listed as a function argument.

 A description of the function's return value to the calling function. The description
should include the meaning of special return values (e.g., error codes returned as a result
of error conditions).

 Notes.

 7

 RPG C Coding Standards

The Notes section should contain the following:

 A discussion of the algorithm used, if applicable.
 The exception handling scheme used in the function.

Items in the function heading block that are not applicable need not be included. If included but
are not applicable, state N/A.

2.2.1.2 Function Returns

The function return type should appear on the same line as the function name:

 int MLB_open(int identifier, int flags, MLB_attr *attr);

Do not default the function return type to type int. If a function does not return a value, give it
return type void.

2.3 Include Files

Include (header) files contain global constants, type definitions, variable definitions, function
prototypes, etc. which are used by one or more C functions. Organize the header files
functionally. For example, put definitions for separate subsystems or libraries in separate header
files. Place non-portable code (i.e., code that would probably change if ported to different
hardware) in a separate header file. Do not name header files with the same name as a system
header file.

Use the ‘<‘ and ‘>’ symbols to include system header files in your C source module and use
double quotation for all other header files:

Example:

 #include <stdio.h> /* System header */
 #include “my_header.h” /* Application header file */

Do not use absolute or relative path names to point to your header files:

 #include “/home_dir/inc/my_header.h” /* Don’t do this */
 #include “/../../another_header.h” /* Don’t do this, either */

It is much better to use the -I<dir> C compiler command line parameter to inform the compiler
the location of your header files:

 gcc ... -I/my_header_dir ...

 8

 RPG C Coding Standards

Header files, particularly system header files, often include other header files. When this occurs,
one or more header files may be included more than once. This is called multiple inclusion and
is poor programming practice. To prevent multiple header file inclusion, use the following
construct:

 #ifndef MULTIPLE_EXCLUSION_SYMBOL
 #define MULTIPLE_EXCLUSION_SYMBOL

 /* Body of header.h file here */

 #endif /* MULTIPLE_EXCLUSION_SYMBOL */

The multiple exclusion symbol is the header file name in uppercase with the suffix _H. For
example, for header file com_defs.h the multiple exclusion symbol would be COM_DEFS_H.

3 Readability and Maintainability

3.1 Brace Style

The essential purposes of using braces are to delimit blocks of code, provide a limited scope to
local variables, and to make a program's purpose and structure clear.

Two brace styles are common. One example is:

 if (nodeptr->data != 0) {
 nodeptr = nodeptr->forward_link;
 }

The opening brace follows to the right of the condition statement, and the closing brace is
aligned with the beginning of the condition statement. Code inside the braces is appropriately
indented. This style is expanded when using compound block statements, as:

 if (nodeptr->data != 0) {
 nodeptr = nodeptr->forward_link;
 }
 else {
 nodeptr->data = 1;
 }

Another popular style is:

 if (nodeptr->data != 0)
 {
 nodeptr = nodeptr->forward_link;
 }

and

 9

 RPG C Coding Standards

 10

 if (nodeptr->data != 0)
 {
 nodeptr = nodeptr->forward_link;
 }
 else
 {
 nodeptr->data = 1;
 }

For reasons of consistency and clarity, choose one of these two styles and adopt it when writing
code.

NOTE: When modifying code that others have written, be careful to pay strict attention and
follow the style already in use within the module or library. Having multiple coding styles
within a function or file reduces readability of the code.

3.2 Whitespace

Use whitespace to make reading through source code easier, and to reflect such program
constructs as block structure. Be judicious in your use of white space.

3.2.1 Horizontal Spacing

Appropriate spacing enhances the readability of variables, operators and statements. Place one
space on either side of binary operators:

 *speed = *miles / *hour;

In the next example, we remove the white space and not only is the code more difficult to read,
but we also introduce an error, as the compiler will interpret /* as a beginning comment symbol.

 *speed=*miles/*hour;

Use white space between comma-separated arguments in a list:

 My_function (int nyquist_vel, int unamb_range);

However, macro definitions with arguments must not have a white space between the name and
the left parenthesis, or the C preprocessor will not recognize the argument list.

Splitting long strings of conditional operators onto separate lines and using appropriate
whitespace also enhances code readability. Similarly, break elaborate for loops onto different
lines. Notice the white space surrounding the parentheses:

 RPG C Coding Standards

 if (radial[waveform_type] != CONTIGUOUS_SURVEILLANCE &&
 radial[waveform_type] != CONTIGUOUS_DOPPLER &&
 radial[waveform_type] != STAGGERED_PRF)
 {

 }
and

 for (cell = index_begin, data_start = 0;
 cell < MAX_RANGE_CELLS;
 cell++, data_start++)
 {

 }

3.2.2 Vertical Spacing

Group together related program statements and use blank lines to separate them from other
program statements. Use one or more blank lines or a combination of blank lines to separate the
source code of one function from another.

 int get_average (int num_1, int num_2)
 {
 int average;

 average = (num_1 + num_2) / 2;
 return (average);
 }

 /**/
 Description:
 Does something.

 Inputs:
 score_1 - ….
 Score_2 - ….

 Outputs:

 /**/

 void do_something (int score_1, int score_2)
 {
 #define MINIMUM 0
 #define MAXIMUM 100
 int test;

 11

 RPG C Coding Standards

 int largest = MINIMUM;
 int smallest = MAXIMUM;

 test = get_average (score_1, score_2);

 if (test > largest)
 {
 largest = test;
 }
 else if (test < smallest)
 {
 smallest = test;
 }
 }

3.2.3 Indentation

Indentation helps reveal the logical structure of your code. Use two, three, or four spaces when
indenting your code. Be consistent with whatever number of spaces you select. The examples in
this document use three spaces for indentation. Avoid using tabs to indent.

3.3 Comments

Comments in source code should describe what is happening, how it is being done, what
parameters mean and any restrictions or (known) bugs. Avoid comments that simply restate the
code. Comments that disagree with the commented code are more confusing than helpful. Use
short comments to describe what ("compute mean value"), rather than how ("sum of values
divided by n").

Justify unusual code by commenting it; explain the unusual behavior and describe why you used
the particular approach.

3.3.1 Block Comments

Different forms of comments are appropriate for different places in source code. Within a code
segment, the following two forms of block comments are preferred:

 /*
 This is a comment in block form.
 Comment text should be aligned uniformly.
 Opening slash-star / closing star-slash are alone on a line.
 */

or

 12

 RPG C Coding Standards

 /*
 * This is a comment in block form.
 * Comment text should be aligned uniformly.
 * Each line begins with an asterisk’.
 */

Outside of code segments or functions, the following form is preferred:

 /***
 * This is a comment in block form. *
 * Comment text should be aligned uniformly. *
 * Surround comment with asterisks (trailing asterisk optional *
 * on lines 2 through n-1). *
 ***/

Never use “//” to denote comments. Although this may be acceptable with some compilers,
it is not ANSI C compliant and is not portable.

3.3.2 One-Line Comments

Another comment form is a one-line comment. Generally, one-line comments are short, and
describe a short code fragment:

 /* Check if Bypass Map Request was solicited. */
 if (bypass_map_request_pending)
 [...]

3.3.3 In-Line Comments

Comments that are very short often appear on the line of code to which they refer. Use spaces to
separate those comments from the code itself. It is good practice to align several short comments
associated with a block of code, as shown

 if (argc <= 2){
 error_value = INCOMPLETE; /* Wrong number of arguments */
 }
 else{
 error_value = SUCCESSFUL; /* Has minimum # of arguments*/
 }

All local variables, except trivial ones, should be explained with in-line comments. Static and
external variables should always be explained with in-line comments.

3.4 Naming Conventions

There are some general rules and guidelines for the RPG project:

 13

 RPG C Coding Standards

 Names with leading and trailing underscores are reserved for system use, and should not
be used by the programmer in that form, or as part of a user-created name.

 Constants defined by #define should be in all CAPITAL letters. The same is true for
constants within an enumerated (enum) block.

 Names that differ by case only, such as bar and Bar, should be avoided.
 Do not use names that might conflict with standard library names.
 Type defined (typedef) names should have an appended _t to denote they are of a

defined type (e.g., node_t).
 Use starting capital letters for global variables.
 Do not use initial capital letters for non-global variables.
 Use initial capital letters for module level global variables and function names.
 Use more than one initial capital letter (typically 2 or 3) for truly global variables and

function names.
 Words in variable names should be separated by underscores (not by capital letters) and

the variable names should be descriptive.
 Local variables serving as loop indices and the like do not have to be descriptive but

short, descriptive names may prove to be helpful.
 The maximum length of variable names should be limited to 24 characters.

3.4.1 Task/Library Filename Conventions

This section describes the convention for naming the C source (*.c) and header (*.h) files that
comprise a given Task or Library. A key element of this convention is the use of unique
alphanumeric prefixes assigned to each Task or Library. A current list of these prefixes is
maintained in Appendix A and Appendix B.

3.4.1.1 "main" Source Files

The Task C source file that includes the obligatory "main" function will be named either

 prefix.c OR prefix_main.c

where "prefix" is as described above.

Examples:

 psv_main.c - the "main" for the Product Server task
 hci.c - the "main" for the Human Computer Interface (HCI) task

3.4.1.2 Ancillary Source Files

For a given Task or Library, all ancillary C files should be named as follows:

 prefix_*.c

 14

 RPG C Coding Standards

where "*" cannot be "main".

Examples:

 psv_process_events.c
 hci_timer_proc.c

3.4.1.3 Library Public Header Files

Public header files are typically associated with Libraries (rather than Tasks). If a Library
includes a public header file, that file shall be named as follows:

 prefix.h

Example:

 rpgc.h –RPG C Algorithm Support Library

3.4.1.4 Task/Library Private Header Files

Any header files that are "private" to a given Library or Task should be named as follows:

 prefix_*.h

Examples:

 psv_def.h
 hci_product_colors.h

3.4.2 Task/Library Module Name Conventions

This section describes the convention for naming the modules within a given source file. A key
element of this convention is the use of unique alphanumeric prefixes assigned to each Task or
Library. Current lists of these prefixes are maintained in Appendix A and Appendix B.

3.4.2.1 API Functions

Since "public" functions must be documented by an Application Programming Interface (API),
these functions are referred to as "API" functions. APIs allow you to program to a pre-
constructed interface (the API) instead of programming a device or piece of software directly.

 15

 RPG C Coding Standards

These are typically functions provided for the use of software outside the scope of the current
Library.

API function names must incorporate an uppercase prefix as follows:

 PREFIX_*

Example:

 RPGC_get_inbuf_by_name()

3.4.2.2 Intratask/Intralibrary Public Functions

A given Task or Library will typically include functions that are "public" to the software that
comprises the Task or Library but are not intended to be used by software outside the scope of
the current Library.

These public functions should incorporate a non-API uppercase prefix as follows:

 LOCALPREFIX_*

Example:

 WAN_initialize();

3.4.2.3 File-Scope Functions

In keeping with other sections of these Guidelines, file-scope functions should be named with
uppercase first letter only.

Example:

 Open_all_lb(); /* defined in orpgda.c */

4 Definitions / Declarations

This section describes the rules to follow when you define or declare constants, macros, variables
and structures. Apply the static keyword to all global variables and functions local to single
files.

4.1 Constants

Avoid hard coding numerical constants. Using a descriptive name instead of a numerical

 16

 RPG C Coding Standards

constant makes software maintenance much easier since constant values can be changed at one
place. Using the numerical constants -1, 0 and 1 are acceptable when initializing variables. Use
uppercase characters for constant names and separate words in the name with underscores.
Include comments when the meaning of the constant is not clear. Use NULL when initializing
pointers or when testing a pointer (rather than 0). Define simple character constants as character
literals rather than numbers. If non-text characters are unavoidable, use their octal or
hexadecimal form (e.g.: '\014' (octal); '\x0c' or 0x0c (hexadecimal)). Still, such usage is most
often machine-dependent; be aware of the word sizes on the architecture in question.

4.1.1 #define

The #define construct (constant macro) instructs the C preprocessor to replace subsequent
instances of the identifier with its value.

 #define INIT_VALUE 0 /* Initial value */
 #define MAX_STR_LEN 80 /* Maximum string length */

Use the #define preprocessor directive for values needed to dimension arrays, otherwise use the
const qualifier. By doing so, better type checking is provided by the compiler and the value is
visible to the debugger.

4.1.2 Const Modifier

One advantage of defining constants with the const qualifier is that it allows a debugger to
access the constant value. However, a constant defined with const may not be used to
dimension arrays.

 const int MAX_DAYS = 7;
 const char WELCOME_MSG[] = “Glad you’re aboard”;

4.1.3 Enumeration Type

You may use an enum to place constants together in a logical group or when actual values for the
constants are unimportant. The first value in an enum is 0 (zero) unless otherwise specified. As
in the other constants, use uppercase characters to construct the constant name. Notice the
alignment and indentation that improve readability.

 enum waveform
 {
 CONTIGUOUS_SURVEILLANCE, /* Value is 0, since not specified */
 CONTIGUOUS_DOPPLER,
 NO_AMBIGUITY_RESOLUTION,
 BATCH,
 STAGGERED_PRF /* Value is 4 */
 };

 17

 RPG C Coding Standards

 enum buffer_operation_result
 {
 UNKNOWN -2, /* Assigned value -2 so ... */
 ERROR,
 EMPTY, /* This constant’s value is 0 and ... */
 FULL,
 OKAY /* This constant’s value is 2 */
 };

4.2 Macros

Avoid function macros and replace them with standard functions. Use of macros is acceptable if
performance is an issue.

4.3 Structures

Structures enhance the logical organization of your data and are often good candidates for type
definitions (typedef). Fully parenthesize structure initializations with braces (do not use the
empty initializer { }). Make your defined type name have as a minimum a leading upper case
character and append “_t” to the name to indicate the type definition.

 typedef struct radial_type
 {
 enum waveform wave; /* processing type */
 float velocity_resolution; /* 0.5 or 1.0 m/s */
 short pulse_width; /* Long pulse(2) or short(1) */
 } Radial_type_t;

4.4 Variables

Place unrelated declarations of variables of the same type on separate lines. Related variables
may be grouped. Include a comment for each variable if the meaning of the declared variable is
not obvious from its name. If access to an external variable is restricted to the module in which
the variable is defined (i.e., the variable is static), you must begin the variable definition with the
keyword static. An external identifier that can be accessed across modules is a global variable
and usually declared with the keyword extern. It is good practice to align names, values, and
comments underneath each other. Examples are shown below.

 int alarm_priority; /* Alarm ranking. Used by scheduler */
 int alarm_state; /* Is alarm off, on standby or active? */
 int short x, y, z; /* Cartesian coordinates */

 static char *TaskName; /* Name of the current task. The static
 keyword restricts access to this
 variable to the module where it is
 defined. */

 18

 RPG C Coding Standards

 extern long All_task_ids[]; /* List of ids for all tasks. Since this
 is a declaration and not a definition,
 no need to dimension array */

When defining a variable to a pointer, associate the pointer qualifier '*' with the variable name,
not the variable type.

 char *ptr_to_char = NULL; /* Good practice */
 char* ptr_to_char; /* Bad practice */

Explicitly initialize a variable whose initial value is important. Do not assume that variables are
automatically initialized to zero.

4.4.1 Numbers

Include at least one digit on either side of the decimal point for floating point variables. Start
hexadecimal variables with 0x and use uppercase for A-F.

 const float GRAVITY_EFFECT = 0.937;
 const int MAX_WEIGHT = 0x1F4A;

When initializing long variables with constants, use an uppercase L:

 long starting_slant_range = 1000L; /* Clearly a long 'L' */
 long starting_slant_range = 1000l; /* Looks like the number 10001' */

When initializing float variables with enumerated constants, use lowercase f.

 float starting_slant_range = 1.0f;

4.5 Functions

Place the opening brace at the end of the function name or by itself on a separate line aligned
with the first character of the function type. Use the keyword static to restrict access to a
function to the module in which the function is defined. Indent local declarations within a
function and separate them from the body of the function by appropriate whitespace. For
example:

 int MLB_open(int identifier, int flags, MLB_attr *attr)
 {
 MLB_struct *mlb;
 int index; /* MLB index */
 ...

Comment each local variable unless it is clear by name. Typically a loop counter such as 'i' is
understood for what it is so commenting it is not necessary. Give careful thought to future
software modification and maintenance before assigning any variable a nondescript name and

 19

 RPG C Coding Standards

not include a comment. You may define local variables within the block with smallest scope:

 if(radial_status == GOOD)
 {
 int i; /* i is defined for the “if” block */

 for(i = 0; i < LENGTH; i++)
 {
 ...
 }
 }

Do not use local declarations that override higher level definitions/declarations of the same
name.

5 Statements and Program Control

5.1 Statements

Place each program statement on a separate line:

 task_name = get_current_task (...); /* Retrieve name of current task */

 push_name (task_name); /* and place on name stack */

No individual program line should exceed 80 characters in length. If a program statement
exceeds this limit, break it into multiple lines (not necessarily multiple statements).

An embedded assignment statement is a form of side effect. Rarely use embedded assignment
statements. There are some instances, however, where there is no cleaner way to accomplish
what you want without making the code bulky. The following are a couple of common examples
of embedded assignments:

 while ((c = getchar()) != EOF)
 {

 }

 If ((obj_ptr = malloc (number, size)) == NULL)
 {

 }

Remember that the operators increment (++) and decrement (--) count as assignments. Although
allowed, we discourage embedding increment and/or decrement assignments. They are often a
source of error and can be difficult to debug.

Avoid using the goto statement. It can be usefully employed to break out of several levels of
for/while/switch nesting (though you should rethink and redesign any code that meets this
condition):

 20

 RPG C Coding Standards

 for (...)
 {
 while (...)
 {
 .
 .
 .
 if (disaster)
 {
 goto error;
 }
 }
 }

 error: /* clean up this mess */

If a goto is used, align it one tab stop to the left of the label that follows (so as to set it off and
make it recognizable).

5.2 Program Control

5.2.1 Loops

Place null bodies of for or while loops on a separate line, and comment them so that it is clear a
null loop body is intended.

 for (i = 0; product_ids[i] != requested_product; i++)
 {
 }; /* Null Loop Body intended*/

Although not required, we strongly recommend the use of braces in for and while loops where
simple statements follow the condition.

 while (i < total) /* This is okay, but ... */
 part_codes[i] = tmp_codes[i];

 while (i < total) /* ... this is recommended */
 {
 part_codes[i] = tmp_codes[i];
 }

The penalty is only one or two extra lines and the code is more readable and easier to interpret.

5.2.2 if, if-else, and switch

Just as with loops, we strongly recommend the use of braces in conditional statements (if, if-
else, and switch) where simple statements follow the condition. Again, it improves readability

 21

 RPG C Coding Standards

and maintainability. However, if the statement following the condition is compound, all
statements are “considered” compound and thus, should be surrounded by braces (called fully
bracketed syntax).

 if (signal_received == FALSE) /* While this is accepted ... */
 resend_signal ();

 if (signal_received == FALSE) /* ... this is recommended */
 {
 resend_signal ();
 }

 if (radar_state == INVALID) /* Braces used here since the */
 { /* else clause is compound */
 change_state = TRUE;
 }
 else
 {
 change_state = FALSE;
 retrieve_state_attributes ();
 }

Always use braces with an if-if-else construct. This ensures that parsing is done correctly and
clauses meant to be associated with one condition are correctly associated. In the following
example, we want the else clause to associate with the first if statement and we indent it as
such. However, because there are no braces to block the if-if-else properly, the compiler will
place the else clause with the second if statement.

 if (altitude > threshold) /* Too high, but check tmp 1st */
 if (temperature < min_temp) /* Temp is too low - not good */
 location = BAD; /* This location won’t do */
 else /* Altitude okay so this */

 location = POSSIBLE; /* location may work */

Instead, code it like:

 if (altitude > threshold) /* Too high, but check tmp first */
 {
 if (temperature < min_temp) /* Temp too low - not good */
 {
 location = BAD; /* This location won’t do */
 }
 }
 else /* Altitude okay so this */
 { /* location may work */
 location = POSSIBLE;
 }

The code above is clear to both people and the compiler. There is no question about where the
else clause belongs.

 22

 RPG C Coding Standards

The switch statement can cause problems because it is possible to "fall through" to the next
condition after one condition has been met. Sometimes this is a desirable feature. Make sure you
comment its use.

 switch (expression)
 {
 case A:
 statement;
 break;

 case B:
 statement;
 /* FALL THROUGH */
 case C:
 statement;
 break;

 default:
 break;
 }

5.2.3 Tests

Defaulting tests for non-zero is generally a bad idea. We recommend that explicit tests against a
set return flag be coded, as:

 if ((buff_ptr = carve_buffer_space (length)) != FAIL)

rather than

 if ((buff_ptr = carve_buffer_space (length)))

because an explicit test will help later when the constant value for FAIL is changed from 0 to
another value (-1, for example) or the return value for the function (carve_buffer_space in the
example) is changed to 0 (zero).

Use explicit comparisons to reflect the numeric (not boolean) nature of a test:

 if((queue_ptr % MAX_QUEUE_SIZE) == 0)

instead of

 if (!(queue_ptr % MAX_QUEUE_SIZE))

One common practice for using a boolean type is to include one of the following in a globally
included header file:

 23

 RPG C Coding Standards

 typedef int bool;

 #define TRUE 1
 #define FALSE 0

or
 typedef enum { NO = 0, YES } bool;

Generally, we suggest you test boolean values for inequality with 0 (FALSE, etc.) rather than for
equality with 1 (TRUE, etc.). Most functions, BUT NOT ALL, are guaranteed to return 0 (zero)
if false, but only non-zero if true. For example,

 if (func() != FALSE)

is usually better than

 if (func() == TRUE)

However, when you explicitly define TRUE, you may use the second form (func() == TRUE)
instead of the first form (func() != FALSE) if it "makes more sense" to do so. Renaming the
function or macro expression may be better, where possible so that the meaning is obvious
without a comparison to TRUE or FALSE (isvalid(), for example).

6 Portability

For this document, portable means that a source code file can be compiled and executed on
different machines with the only changes being the possible inclusion of different header files
and the use of different compiler flags. The header files contain #define and typedef constructs
that may vary from machine to machine (new machine may mean different hardware, a different
operating system, a different compiler, or any combination of these).

Some important issues:

 Recognize that some things are inherently non-portable. Try to avoid these wherever
possible.

 Try to organize machine-independent code in separate files from machine dependent
code.

 NULL pointers are not always stored with all bits zero, and so may not compare equally
with a variable that has a value of zero.

 Data alignment is an important consideration. Various machines may begin addresses at
even numbers, while others may do this but restrict the valid addresses to multiple-of-
four addresses.

 Recognize that some machines are little-endian and some are big-endian. Byte-ordering
in words (and further, word ordering) is important.

 24

 RPG C Coding Standards

 Bit shifts and bit masks are affected by word size. Do not assume all machines have the
same convention.

 Be familiar with existing library functions and definitions, but do not depend on them.
They can be changed any time.

 Use explicit casts when in doubt.

7 References

We used several documents, articles and books when creating the RPG C Coding Standards
document. Some text is used verbatim and other text we reworded.

 The C Programming Language, 2nd Ed., Kernighan & Ritchie, Prentice Hall, 1988
 Tornado User’s Guide (UNIX Version) 1.0, WindRiver Systems, 1995
 Advanced C Tips and Techniques, Paul Anderson and Gail Anderson, Hayden Books,

1989
 NASA’s Software Engineering Laboratory’s C Style Guide
 Indian Hill C Style and Coding Standards paper

The Bibliography from NASA’s Software Engineering Laboratory’s C Style Guide:

 Atterbury, M., ESA Style Guide for 'C' Coding, Expert Solutions Australia Pty. Ltd.,
Melbourne, Australia (1991)

 Computer Sciences Corporation, SEAS System Development Methodology (Release 2)
(1989)

 Indian Hill C Style and Coding Standards, Bell Telephone Laboratories, Technical
Memorandum 78-5221 (1978)

 Kernighan, B., and Ritchie, D., The C Programming Language, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1978)

 Minow, M., A C Style Sheet, Digital Equipment Corporation,Maynard, Massachusetts
 Oualline, S., C Elements of Style, M&T Publishing, Inc., San Mateo, California (1992)
 Wood R., and Edwards, E., Programmer's Handbook for Flight Dynamics Software

Development, SEL-86-001 (1986)

References from the Indian Hill C Style and Coding Standards Paper

 B.A. Tague, C Language Portability, Sept 22, 1977. This document issued by department
8234 contains three memos by R.C. Haight, A.L. Glasser, and T.L. Lyon dealing with
style and portability.

 S.C. Johnson, Lint, a C Program Checker, Unix Supplementary Documents, November
1986.

 R.W. Mitze, The 3B/PDP-11 Swabbing Problem, Memorandum for File, 1273-
770907.01MF, September 14, 1977.

 R.A. Elliott and D.C. Pfeffer, 3B Processor Common Diagnostic Standards- Version 1,
Memorandum for File, 5514-780330.01MF, March 30, 1978.

 25

 RPG C Coding Standards

 R.W. Mitze, An Overview of C Compilation of Unix User Processes on the 3B,
Memorandum for File, 5521-780329.02MF, March 29, 1978.

 B.W. Kernighan and D.M. Ritchie, The C Programming Language, Prentice Hall 1978,
Second Ed. 1988, ISBN 0-13-110362-8.

 S.I. Feldman, Make -- A Program for Maintaining Computer Programs,
UNIXSupplementary Documents, November 1986.

 Ian Darwin and Geoff Collyer, Can't Happen or /* NOTREACHED */ or Real Programs
Dump Core, USENIX Association Winter Conference, Dallas 1985 Proceedings.

 Brian W. Kernighan and P. J. Plauger The Elements of Programming Style. McGraw-
Hill, 1974, Second Ed. 1978, ISBN 0-07-034-207-5.

 J. E. Lapin Portable C and UNIX System Programming, Prentice Hall 1987, ISBN 0-13-
686494-5.

 Ian F. Darwin, Checking C Programs with lint, O'Reilly & Associates, 1989. ISBN 0-
937175-30-7.

 Andrew R. Koenig, C Traps and Pitfalls, Addison-Wesley, 1989. ISBN 0-201-17928-8.

 26

 RPG C Coding Standards

Appendix A. Infrastructure Task/Library Prefixes

CSS Client/Server Support Library

CS Configuration Support Library

 Data Element Attribute Utility Library DEAU

EN Event Notification Services Library

LB Linear Buffer Library

LE Log Error Library

MALRM Multiple Alarm Library

MISC Miscellaneous Services

NET Network Services Library

RMT Remote Tool

RSS Remote System Services

SMIA Structure Metadata Information Applications Library

STR String Manipulation Library

SUPP Supplemental Services

 27

 RPG C Coding Standards

Appendix B. RPG Task/Library Prefixes

CRDA Control RDA

HCI Human/Computer Interface Task

IPI Initialize Product Information

MNGRED Manage Redundant

MNGRPG Manage RPG

MRPG Monitor RPG

ORPGADPT Adaptation Data Support Library

ORPGADPTSV Adaptation Data Support Library

ORPGADPTU Adaptation Data Support Library

ORPGALT Alert Threshold Table Support Library

ORPGCCZ Clutter Censor Zone Support Library

ORPGCFG Configuration Support Library

ORPGCMI Communications Manager Interface Library

ORPGCMP Data Compression Support Library

ORPGBDR Base Data Replay Library

ORPGDA ORPG Data Access Library

ORPGDAT Data Attribute Table Support Library

ORPGINFO RPG Info Datastore Access

ORPGDBM Data Base Manager Support Library

ORPGEDLOCK Edit Lock Support Library

ORPGGDR Generic Radial Support Library

ORPGGST RPG Status Support Library

ORPGTASK Task Routines

 28

 RPG C Coding Standards

 29

ORPGTAT Task Attribute Table Access

ORPGLOAD RPG Load Support Library

ORPGMGR Manage RPG Support Library

ORPGMISC RPG Miscellaneous Library

ORPGNBC Narrowband Control Support Library

ORPGPAT Product Attribute Table Support Library

ORPGPGT Product Generation Table Support Library

ORPGPRQ Product Request Support Library

ORPGRAT RDA Alarm Table Support Library

ORPGRDA RDA Status and Control Support Library

ORPGRED FAA Redundant Support Library

ORPGSITE RPG Site Information Support Library

ORPGSMI Support Metadata Information Library

ORPGSUM Scan Summary Data Support Library

ORPGVCP VCP Support Library

ORPGVST Volume Status Support Library

OTR One Time Request

PBD Process Base Data

PRM Process Remove

RMS Remote Monitoring Subsystem

MNTTSK RPG-Specific Maintenance Tasks

UMC User Message Conversion

	ETL Date:

